
ECE 301
Division 1, Fall 2006

Instructor: Mimi Boutin
Final Examination

Instructions:

1. Wait for the “BEGIN” signal before opening this booklet. In the meantime,
read the instructions below and fill out the requested info.

2. You have two hours to answer the 8 questions contained in this exam, for a
total of up to 147 points. When the end of the exam is announced,
you must stop writing immediately. Anyone caught writing after the
exam is over will get a grade of zero.

3. This booklet contains 19 pages. The last pages contain a table of formu-
las and properties (5 pages) as well as some scratch paper (4 pages). You
may detach the scratch paper and the formula pages from the booklet once
the exam begins. Each transform and each property is labeled with a
number. To save time, you may use these numbers to specify which trans-
form/property you are using when justifying your answer. In general, if you
use a fact which is not contained in this table, you must explain why it is
true in order to get full credit. The only exception are the properties of the
ROC, which you can use without justification.

4. This is a closed book exam. The only personal items allowed are pens/pencils,
erasers and something to drink. Anything else is strictly forbidden. That
includes cell phones, iPods, and PDAs.

5. You must keep your eyes on your exam at all times. Looking around is
strictly forbidden.

Name:

Email:

Signature:
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(15 pts) 1. An LTI system has unit impulse response h[n] = u[n+2]. Compute the

system’s response to the input x[n] =
(

1+j
3

)n

u[n]. (Simplify your answer until all
∑

signs disappear.)
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2. A discrete-time system is such that when the input is one of the signals in the
left column, then the output is the corresponding signal in the right column:

input output

x0[n] = δ[n] → y0[n] = δ[n − 1],

x1[n] = δ[n − 1] → y1[n] = 4δ[n − 2],

x2[n] = δ[n − 2] → y2[n] = 9δ[n − 3],

x3[n] = δ[n − 3] → y3[n] = 16δ[n − 4],

...

xk[n] = δ[n − k] → yk[n] = (k + 1)2δ[n − (k + 1)] for any integer k.

(10 pts) a) Can this system be time-invariant? Explain.

(10 pts) b) Assuming that this system is linear, what input x[n] would yield the
output y[n] = u[n − 1]?
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(22 pts) 3. Let x(t) and y(t) be the input and the output of a discrete-time
system, respectively. Answer each of the questions below with either yes or no (no
justification needed).

Yes No

If y(t) = x(2t), is the system causal?

If y(t) = (t + 2)x(t), is the system causal?

If y(t) = x(−t2), is the system causal?

If y(t) = x(t) + t − 1, is the system memoryless?

If y(t) = x(t2), is the system memoryless?

If y(t) = x(t/3), is the system stable?

If y(t) = tx(t/3), is the system stable?

If y(t) =
∫ t

−∞ x(τ)dτ , is the system stable?

If y(t) = sin (x(t)), is the system time invariant?

If y(t) = u(t) ∗ x(t), is the system LTI?

If y(t) = (tu(t)) ∗ x(t), is the system linear?
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(15 pts) 4 Compute the energy and the power of the signal x(t) = 3ejt

1+j
.
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(15 pts) 5. Compute the coefficients ak of the Fourier series of the signal

x(t) =

∞
∑

k=−∞

3

(

u(t +
1

2
+ 2k) − u(t −

1

2
+ 2k)

)

.

(Simplify your answer as much as possible.)
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(15 pts) 6. The Laplace transform of the unit impulse response of a system is

H(s) =
1

s + 2
,Re(s) > 2.

Determine the response y(t) of the system when the input is x(t) = e−3|t|.
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7. The block diagram below shows a system consisting of a continuous-time LTI
system followed by a sampler, conversion to a sequence, and an LTI discrete-
time system. The continuous-time LTI system is causal and satisfies the linear,
constant-coefficient differential equation

dyc(t)

dt
+ yc(t) = xc(t).

The input xc(t) is a unit impulse δ(t).

(10 pts) a) Determine the input yc(t).

(Problem 7 continues on the next page.)
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(15 pts) b) Determine the frequency response H(ejω) and the unit impulse response
h[n] such that w[n] = δ[n].
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8. A commonly used system to maintain privacy in voice communication is a
speech scrambler. The input of the system is a normal speech signal x(t) and
the output is the scrambled version y(t). The signal y(t) is transmitted and then
unscrambled at the receiver.

We assume that all inputs to the scrambler are real and band limited to the
frequency ωM ; that is, X (ω) = 0 for |ω| > ωM . Given any such input, our
proposed scrambler permutes different bands of the spectrum of the input signal.
In addition, the output is real and band limited to the same frequency band: that
is Y(ω) = 0 for |ω| > ωM . The specific algorithm for the scrambler is

Y(ω) = X (ω − ωM), when ω > 0,

Y(ω) = X (ω + ωM), when ω < 0.

(5 pts) a) Assuming that X (ω) = ω2(u(ω + 3) − u(ω − 3)), sketch the graph of
Y(ω).

(10 pts) b) Draw a block diagram for such an ideal scrambler.

(10 pts) c) Draw a block diagram for the associated unscrambler.

10



Table

DT Signal Energy and Power

E∞ =

∞
∑

n=−∞

|x[n]|2 (1)

P∞ = lim
N→∞

1

2N + 1

N
∑

n=−N

|x[n]|2 (2)

CT Signal Energy and Power

E∞ =

∫ ∞

−∞
|x(t)|2 dt (3)

P∞ = lim
T→∞

1

2T

∫ T

−T

|x(t)|2 dt (4)

Fourier Series of CT Periodic Signals with period T

x(t) =

∞
X

k=−∞

ake
jk

“

2π
T

”

t
(5)

ak =
1

T

Z

T

0

x(t)e
−jk

“

2π
T

”

t
dt (6)

Fourier Series of DT Periodic Signals with period N

x[n] =

N−1
X

k=0

ake
jk

“

2π
N

”

n
(7)

ak =
1

N

N−1
X

n=0

x[n]e
−jk

“

2π
N

”

n
(8)
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CT Fourier Transform

F.T. : X(ω) =

Z

∞

−∞

x(t)e
−jωt

dt (9)

Inverse F.T.: x(t) =
1

2π

Z

∞

−∞

X(ω)e
jωt

dω (10)

Properties of CT Fourier Transform

Let x(t) be a continuous-time signal and denote by X(ω) its Fourier transform. Let y(t) be another continuous-time signal
and denote by Y (ω) its Fourier transform.

Signal F T

Linearity: ax(t) + by(t) aX(ω) + bY (ω) (11)

Time Shifting: x(t − t0) e
−jωt0 X(ω) (12)

Frequency Shifting: e
jω0t

x(t) X(ω − ω0) (13)

Time and Frequency Scaling: x(at)
1

|a|
X

„

ω

a

«

(14)

Multiplication: x(t)y(t)
1

2π
X(ω) ∗ Y (ω) (15)

Convolution: x(t) ∗ y(t) X(ω)Y (ω) (16)

Differentiation in Time:
d

dt
x(t) jωX(ω) (17)

Some CT Fourier Transform Pairs

e
jω0t F

−→ 2πδ(ω − ω0) (18)

1
F
−→ 2πδ(ω) (19)

sin Wt

πt

F
−→ u(ω + W ) − u(ω − W ) (20)

u(t + T1) − u(t − T1)
F
−→

2 sin(ωT1)

ω
(21)

δ(t)
F
−→ 1 (22)

u(t)
F
−→

1

jω
+ πδ(ω) (23)

e
−at

u(t),Re{a} > 0
F
−→

1

a + jω
(24)

te
−at

u(t),Re{a} > 0
F
−→

1

(a + jω)2
(25)
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DT Fourier Transform

Let x[n] be a discrete-time signal and denote by X(ω) its Fourier transform.

F.T.:X(ω) =

∞
X

n=−∞

x[n]e
−jωn

(26)

Inverse F.T.: x[n] =
1

2π

Z

2π

X(ω)e
jωn

dω (27)

Properties of DT Fourier Transform

Let x(t) be a signal and denote by X(ω) its Fourier transform. Let y(t) be another signal and denote by Y (ω) its Fourier
transform.

Signal F.T.

Linearity: ax[n] + by[n] aX(ω) + bY (ω) (28)

Time Shifting: x[n − n0] e
−jωn0 X(ω) (29)

Frequency Shifting: e
jω0n

x[n] X(ω − ω0) (30)

Time Reversal: x[−n] X(−ω) (31)

Time Exp.: xk[n] =



x[ n
k

], if k divides n

0, else.
X(ω) (32)

Multiplication: x[n]y[n]
1

2π
X(ω) ∗ Y (ω) (33)

Convolution: x[n] ∗ y[n] X(ω)Y (ω) (34)

Differencing in Time: x[n] − x[n − 1] (1 − e
−jω

)X(ω) (35)

Some DT Fourier Transform Pairs

N−1
X

k=0

ake
jk

“

2π
N

”

n F
−→ 2π

∞
X

k=−∞

akδ(ω −
2πk

N
) (36)

e
jω0n F

−→ 2π

∞
X

l=−∞

δ(ω − ω0 − 2πl) (37)

1
F
−→ 2π

∞
X

l=−∞

δ(ω − 2πl) (38)

sin Wn

πn
, 0 < W < π

F
−→ u(ω + W ) − u(ω − W )X(ω) =



1, 0 ≤ |ω| < W

0, π ≥ |ω| > W
(39)

X(ω)periodic with period 2π

δ[n]
F
−→ 1 (40)

u[n]
F
−→

1

1 − e−jω
+ π

∞
X

k=−∞

δ(ω − 2πk) (41)

α
n

u[n], |α| < 1
F
−→

1

1 − αe−jω
(42)

(n + 1)α
n

u[n], |α| < 1
F
−→

1

(1 − αe−jω )2
(43)
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Laplace Transform

X(s) =

Z

∞

−∞

x(t)e
−st

dt (44)

Properties of Laplace Transform

Let x(t), x1(t) and x2(t) be three CT signals and denote by X(s), X1(s) and X2(s) their respective Laplace transform.
Let R be the ROC of X(s), let R1 be the ROC of X1(z) and let R2 be the ROC of X2(s).

Signal L.T. ROC

Linearity: ax1(t) + bx2(t) aX1(s) + bX2(s) At least R1 ∩ R2 (45)

Time Shifting: x(t − t0) e
−st0X(s) R (46)

Shifting in s: e
s0t

x(t) X(s − s0) R + s0 (47)

Conjugation: x
∗
(t) X

∗
(s

∗
) R (48)

Time Scaling: x(at)
1

|a|
X

„

s

a

«

aR (49)

Convolution: x1(t) ∗ x2(t) X1(s)X2(s) At least R1 ∩ R2 (50)

Differentiation in Time:
d

dt
x(t) sX(s) At least R (51)

Differentiation in s: − tx(t)
dX(s)

ds
R (52)

Integration :

Z

t

−∞

x(τ)dτ
1

s
X(s) At least R ∩ Re{s} > 0 (53)

Some Laplace Transform Pairs

Signal LT ROC

δ(t) 1 all s (54)

u(t)
1

s
Re{s} > 0 (55)

u(t) cos(ω0t)
s

s2 + ω2

0

Re{s} > 0 (56)

e
−αt

u(t)
1

s + α
Re{s} > −α (57)

−e
−αt

u(−t)
1

s + α
Re{s} < −α (58)

(59)
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z-Transform

X(z) =
∞
X

n=−∞

x[n]z
−n

(60)

Properties of z-Transform

Let x[n], x1[n] and x2[n] be three DT signals and denote by X(z), X1(z) and X2(z) their respective z-transform. Let R

be the ROC of X(z), let R1 be the ROC of X1(z) and let R2 be the ROC of X2(z).

Signal z-T. ROC

Linearity: ax1[n] + bx2[n] aX1(z) + bX2(z) At least R1 ∩ R2 (61)

Time Shifting: x[n − n0] z
−n0X(z) R, but perhaps adding/deleting z = 0 (62)

Time Shifting: x[−n] X(z
−1

) R
−1

(63)

Scaling in z: e
jω0n

x[n] X(e
−jω0z) R (64)

Conjugation: x
∗
(t) X

∗
(z

∗
) R (65)

Convolution: x1[n] ∗ x2[n] X1(z)X2(z) At least R1 ∩ R2 (66)

Some z-Transform Pairs

Signal LT ROC

u[n]
1

1 − z−1
|z| > 1 (67)

−u(−n − 1)
1

1 − z−1
|z| < 1 (68)

αnu[n]
1

1 − αz−1
|z| > α (69)

−αnu[−n − 1]
1

1 − αz−1
|z| < α (70)

δ[n] 1 all z (71)
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