1) Parametric Method separation hyperplane between two classes obtained by w, = S,,*(m;-m,)
compared to using S,,=I:

In order to investigate the difference between using the true within class scatter matrix and using S,, = |,
we created two classes of 2-feature data with a Normal distribution using the “mvnrnd” Matlab
function, with P(w;) = P(w;) =%, u1 =[5 5]", and Mo =[3 3]". We set g, to a constant matrix of [1 0; 0 1],
and varied 2, by varying the values on the main diagonal of the covariance matrix independently from
0.1to 2, in steps of 0.1. Then, in each of these twenty configurations, 300 training points were created
and used to generate wy using both the formula that maximizes the cost function J(w) and the formula
where S, =1. 5,000 samples were then created using each of the twenty covariance configurations, and
error performance was calculated for classification based on an optimal threshold used upon the
projection of each sample point onto each wy. The ratio of the error performance for the two cases with
each of the 20 covariance matrices is shown in figure 1.1, below.

Error ratio with one fixed ¥ and one varying

(Errors using SW) / (Errors using S, =)

Variance iny Variance in x

Figure 1.1

From the above figure, we see that the within class scatter matrix does, in fact, affect the error
performance of this classifier. From the equation for the within class scatter matrix, we can see that as
the variances of each feature vector become equal, the values in the main diagonal of S,, will become

equal. With no covariance values, and equal variances, the within class scatter matrix will tend towards
a scaled version of the identity matrix. As is seen in Figure 1.1, when the variances in x and y are nearly
equal, the error performance of the two classifications are approximately equal, therefore the ratio
between them is approximately one. However, the more varied the variances become, the less equal
are the ratios. Thus, we have shown that replacing S,, with | is only valid if both covariance matrices for
the Normal distributions are scaled versions of the identity matrix. Otherwise, error performance will
decrease as the variances of the features vary.

2) Comparison of Neural Network Approach of classifier design to Support Vector Machine Approach
of classifier design:

Data used for these experiments is the “svmguidel” dataset available from the following website:
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. These data consist of two classes with four

feature vectors. 3,089 training samples and 4,000 test samples were provided.
Neural Network Approach:

In order to first investigate the neural network approach to designing classifiers, the “nc_multiclass”
neural network toolbox was obtained from http://isp.imm.dtu.dk/toolbox/ann/. This toolbox lets a user

specify the number of hidden units to use in the neural network. It then uses the provided training data
and class specifications to train the network, using the BFGS optimization algorithm. It implements
hyperbolic tangents for the hidden layers, and a softmax function for the output layer.

Experimentation with the neural network classifier consisted of varying the number of hidden layers and
feature vectors. For each training attempt tested, the same set of 300 training samples, 150 from each
class, were used. Results were obtained using four, three, and two feature vectors. The number of
hidden layers was varied from 1 to 20, and all 4,000 sample points were used to calculate the error
performance that is plotted in figure 2.1, below.

Figure 2.1) Percent of Classification Errors from 4,000 Samples
6.2 T T T T T T T T

—— -4 Features
***** 3 Features
\ — - -2 Features

o o o
e » oo
T T T

| |

a
N
T

Percent Error in Classification

4.8+

1
2 4 6 8 10 12 14 16 18 20
Number of Hidden Layers

From the above figure, as expected, using more feature vectors does, in fact, increase the overall error
performance of the neural network. The performance error rates were about 5.3%, 4.6%, and 4.5%
when using two features, three features, and four features, respectively. Also as expected, using more
hidden layers does not mean that the performance of the network will improve. In all three trials, by
using just a few hidden layers, and approximate floor of the error performance is reached, with only
slight variations occurring with more hidden layers. There also is not a trend between the number of
feature vectors and the number of hidden layers required. This is expected, because any two hidden
layers could be combined into one more complicated hidden layer. Thus, theoretically, only one hidden
layer would be required if adequate optimization were performed on the neural network.

Support Vector Machine Approach:

Support vector machines were investigated using the “svmtrain” and “svmclassify” commands from
Matlab’s Bioinformatics Toolbox. Training was performed with a linear kernel classifier.

Again, 300 training samples were used from “svmguidel”, 150 from each class. 4,000 samples were
used to evaluate the error performance of the SVM with each of 1-4 feature vectors being used. Figure
2.2, below, plots the error performance versus the number of feature vectors used for classification. As
expected, the error performance increases with the number of feature vectors used. Error performance

was 21.35%, 6.35%, 5.95%, and 5.8% for 1, 2, 3, and 4 feature vectors, respectively. Figure 2.3, below is
a sample of the support vector created for the 2-feature case.

Figure 2.2) Classifier Error Performance Using SVM
22 ‘ ‘ ‘

= = = = = N
o N N o [e¢] o

Percent Error from 4,000 Samples

(e

1 1 1
1 15 2 25 3 35 4

Number of Feature Vectors
Figure 2.3) Sample of Support Vector Created for 2-Feature Case
180 ‘ T T T T T ‘ ‘ ‘
+ + 1
+ 2
160+ + + O Support Vectors ||
® o L+ T +
° o +
140 @ © ® N R
® +
@ o ° + +
120 @ . i
® ® +
o +
100+ o o . A
o © ® +
gor © .
®
€]
60+ ° b
40 ® ® o i
o e
®
20 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

Comparison of neural network approach and support vector machine approach:

The neural network (NN) approach provided better error performance overall compared to the support
vector machine (SVM) approach. In fact, with each of 2, 3, and 4 feature vectors, the NN approach
outperformed the SVM approach by over 1%. This one percent error performance increase does not
sound like a lot, but when it is considered relative to the roughly 5% error performance of the NN, this is
an increase of nearly 20%. For both of these systems, relatively small training sets of 300 points were
used because of the complexity involved in training the algorithms. However, once training has been
optimized, decision thresholds can be utilized to efficiently classify samples very quickly, thus providing
great systems for many real-life classifier needs.

3) Designing Classifiers using Parzen Window Technique, K-Nearest Neighbor Technique, and Nearest
Neighbor Technique:

Data for this problem were again obtained from the “svmguidel” dataset from
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. The four feature data was first projected to
two dimensions by using Fisher Linear Discriminants, similar to problem 1. Features 1 and 2 were

combined into one feature, and features 3 and 4 were combined into a second feature. Figure 3.1,
below, shows a sample of the training data points plotted after being mapped from four dimensions to
two dimensions.

Figure 3.1) Sample of Training Data after Projecting to Two Dimensions
051
O Class1
¢] + Class 2
4
b+
i
v+ 7
T
4
-05F i
jﬂi&Jr
ey © 5
1F "+ o %o
4
I+ ﬁf(% °© -8
ﬁﬁ&q 85%) o P°
15t A T o
+¥ 1,0 5 2 65®
+ S o° ®» 0000,
00
& Jr0800 o 0@ © R
2f @ o ° @© o
o ° o o
+H+ O o) e} e} o
o ¢
251 (e} °© le® %
o
_3 1 1 1 1 1 1 |
0 200 400 600 800 1000 1200 1400

Parzen Window Technique:

The Parzen window technique classifier that we implemented is very straight forward. At each sample
data point, the number of points from each class that fall within a radius r of that point are counted.
Whichever class has a higher representation in that radius is the statistically favored, thus the sample is

assigned to that class. Error performance for a range of radius values, r, is plotted in Figure 3.2, below.

The best error performance comes with a rather large window size or r = 33, and a minimum error of

7.4%.

Decision Error Percentage

16

15

14

13

12

11

10

Figure 3.2: Decision Error Percentage vs. Parzen Window Radius

10

20

30

L L
40 50 60
Parzen Window Radius

70

80

90 100

Figures 3.3.1 — 3.3.4, below, illustrate how the Parzen window decides a class for r=1. The number of

“hits” in the graph is the number of same-class training points that lie within the radius of the sample

point. The number of “misses” is the number of different-class training points that lie within the radius

of the sample point. When the number of hits is larger than the number of misses at a point, then the

classification is correct. If it is less, then the classification is in error. Thus, Figure 3.3.1 and Figure 3.3.1

shows hits and misses for class 1, respectively, and Figure 3.3.3 and Figure 3.3.4 show hits and misses for

class 2 respectively. Note that in Figures 3.3.1, the number of hits is fairly consistent, and in Figure

3.3.4, the number of misses is very large for the majority of the sample points. This implies that class 1

is tightly grouped; much more so than is class 2. The overlap of the data, and the relative closeness of

Class 1 implies that r = 1 would be a poor choice for the radius of a Parzen window in this case.

Figure 3.3.1) Number of Hits for Class 1,r=1

0 100 200 300 400 500 600 700 800 900 1000

Figure 3.3.2) Number of Misses for Class 1,r=1
40 T T T T T T T

20+ B

Low o Jm‘lA‘Hnuh il A“AMMAMH‘ \A.HL Lty 1 I Al\.u’\ NSV .AMHMNKM bl
0 100 200 300 400 500 600 700 800 900 1000
Figure 3.3.3) Number of Hits for Class 2,r=1
40 T T T T T

o

20+ B

0 bbb bl bl sl T T VT T VIR N S VTR A Y E) Lo bl o]
0 100 200 300 400 500 600 700 800 900 1000

Flgure 3.34) Number of Misses for Class 2,r=1
40 ‘ ‘

WWWMWWWWMWWWW |
O I |
100 300 500

600 700 800 900 1000

K-Nearest Neighbor Technique:

The K-nearest neighbor classifier that was implemented is also very simple. The algorithm finds the K
training points that are closest, in terms of Euclidean distance, to the sample point. The class is then
decided by a majority vote of those training points, which also corresponds to the sample point coming
from the class of highest probability. K is typically chosen to be an odd number, so that that the count
of nearby classes cannot be equal. In figure 3.4, below, the affects of using an even number is evident
by the spikes of higher error probabilities at most even K values. The figure shows the probability of
error versus the number of K-nearest neighbors used in classification. The minimum error occurs at K =
3, with an error of 6.65%.

Figure 3.4) Decision Error Percentage vs. Number of Nearest Neighbors
13 T T T T T T T T T

11r b

Decision Error Percentage

6 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

K, Nearest Neighbors

Nearest Neighbor Technique:

The nearest neighbor technique is simply a special case of the K-nearest neighbor technique. In this
instance, the algorithm simply assigns the class of the sample point to that of the training point that is
the minimum Euclidean distance away. Figure 3.4, above, includes the nearest neighbor point, or the
error corresponding to K= 1. The error is 8.1% for this data set, using the nearest neighbor classification
technique.

Comparing Classifiers designed using Parzen Window Technique, K-Nearest Neighbor Technique, and
Nearest Neighbor Technique:

Of the three classifier methods designed, K nearest neighbors produced the best error performance with
minimum error of 6.65%. The Parzen window technique was second best with a minimum error
performance of 7.4%, and the nearest neighbor technique was the worst, with an error of 8.1%. Itis
expected that nearest neighbor will perform worse than K-nearest neighbor, in general, for real data, as
statistical outliers have a much higher probability of being misclassified. In fact, all three approaches
yield poor performance for statistical outliers, which is a serious problem for use with real data sets.
Overall, these methods are all quite computationally expensive, especially as the number of dimensions
increases, which tends to imply that they would be poor choices for use with very large data sets.

%ECE 662
%Homework 2 - Problem 1
clear all; close all; clc;

pwl = 1/2;

training = 300;

samples = 5000;

error_rat = zeros(20,20);

for sx1=_1:.1:2
for syl=.1:.1:2
mul = [5 5];
sigmal = [sx1 0; O syl];
trainclassl = mvnrnd(mul, sigmal, round(pwl * training));
sampsclassl = mvnrnd(mul, sigmal, round(pwl * samples));

mu2 = [3 3];
sigma2 = [1 0; 0 1];
trainclass2 = mvnrnd(mu2, sigma2, training - round(pwl * training));

sampsclass2 = mvnrnd(mu2, sigma2, samples - round(pwl * samples));

ml = mean(trainclassl,1); %mean of columns
m2 = mean(trainclass2,1); %mean of columns
n = length(ml);

%scatter

Sb = (M1"-m2")*(m1-m2); %2x1

% Sw = sum yi elements of class 1 (yi-mi)*(yi"-mi")

yml = trainclassl;

ym2 trainclass2;

Swa = zeros(n,n);

Swb = zeros(n,n);

%subtracting the means

for x = 1:n
yml(:,x)
ym2(:,x)

yml(:,x)-m1(x);
ym2(: ,x)-m2(X);

end

[x1,y1]
[x2,y2]

size(trainclassl);
size(trainclass2);

for x = 1:x1
Swa = Swa + yml(X,:)"*yml(X,:);
end

for x = 1:x2
Swb = Swb + ym2(Xx, :)"*ym2(X,:);

end

Swl = ((yml®)*(yml));
Sw2 = ((ym27)*(ym2));
Sw = Swl+Sw2;

% w = projection line;

wo = inv(Sw)*(m1-m2)*~;

wOnew = (m1-m2)~";

% Find threshold for w0
z0 = wO" * [trainclassl” trainclass2"];
z0 = sort(z0);
if wO"*ml® < wO"*m2*-
wO_thr = (zO(round(pwl * training)) + zO(round(pwl * training) + 1))/2;
thr_comp0 = 1;
else
wO_thr = (zO(training - round(pwl * training)) + zO(training - round(pwl *«¢
training) + 1))/2;
thr_comp0 = -1;
end

% Find threshold for wOnew
z0 = wOnew® * [trainclassl® trainclass2"];
z0 = sort(z0);
if wOnew"*ml® < wOnew"*m2*
wOnew_thr = (zO(round(pwl * training)) + zO(round(pwl * training) + 1))/2;
thr_comp_new = 1;
else
wOnew_thr = (zO(training - round(pwl * training)) + zO(training - round(pwl * v
training) + 1))/2;
thr_comp_new = -1;
end

% Classify samples

errorsO = sum([(wO"*sampsclassl® * thr_compO > wO_thr * thr_comp0) ...
(wO"*sampsclass2® * thr_comp0 < wO_thr * thr_comp0)]);

errorsOnew = sum([(wOnew"*sampsclassl” * thr_comp_new > ...
wOnew_thr * thr_comp_new) (wOnew"*sampsclass2® * ...
thr_comp_new < wOnew_thr * thr_comp_new)]);

error_rat(uint8(sx1*10),uint8(syl1*10)) errors0/errorsOnew;
end
end

mesh(.1:.1:2,.1:.1:2,error_rat)

xlabel ("Variance in x")

ylabel (*Variance in y")

zlabel (" (Errors using S w) / (Errors using S w = 1)%)
title("Error ratio with one fixed \Sigma and one varying \Sigma"®)
colormap(“gray"®)

% ECE662 HW#2 Problem 2a
clear all; close all; clc;

load svmguide;

[trainclass1(1:150,:); trainclass2(1:150,:)];
= [ones(150,1);2*ones(150,1)];

_test = [testclassl(:,:);testclass2(:,:)];

t_test = [ones(2000,1);2*ones(2000,1)];

X = X

errors4 = zeros(20,1);

for Nh=1:20
results = nc_main(x,t,x_test,t_test,Nh);
classes = results.t_est_test;
error = (classes ~= [ones(2000,1);2*ones(2000,1)D);
errors4(Nh) = sum(error)/length(error)*100;
end

x = [trainclass1(1:150,[1,2,4]); trainclass2(1:150,[1,2,4])];
t = [ones(150,1);2*ones(150,1)];

X_test = [testclassl(:,[1,2,4]);testclass2(:,[1,2,4]1;
t_test = [ones(2000,1);2*ones(2000,1)];

errors3 = zeros(20,1);

for Nh=1:20
results = nc_main(x,t,x_test,t _test,Nh);
classes = results.t _est_test;
error = (classes ~= [ones(2000,1);2*0ones(2000,1)D);
errors3(Nh) = sum(error)/length(error)*100;
end

x = [trainclass1(1:150,[2,4]); trainclass2(1:150,[2,4])]1;
t = [ones(150,1);2*ones(150,1)];

x_test = [testclassl(:,[2,4]);testclass2(:,[2,4])]:
[ones(2000,1);2*ones(2000,1)];

t_test
errors2 = zeros(20,1);

for Nh=1:20
results = nc_main(x,t,x_test,t_test,Nh);
classes = results.t_est_test;
error = (classes ~= [ones(2000,1);2*0ones(2000,1)D);
errors2(Nh) = sum(error)/length(error)*100;
end

%% Plot Results

plot([errors4 errors3 errors2])

legend("4 Features®, "3 Features®, "2 Features”)

title("Figure 2.1) Percent of Classification Errors from 4,000 Samples™)
xlabel ("Number of Hidden Layers"®)

ylabel ("Percent Error in Classification®)

% ECE662 HW#2 Problem 2b
clear all; close all; clc;
load svmguide;

Training = [trainclass1(1:150,:); trainclass2(1:150,:)];

Group = [ones(150,1);2*ones(150,1)1;

SVMStruct = svmtrain(Training, Group);%, “Showplot”®,true);

classes = svmclassify(SVMStruct, [testclassl1l(:,:);testclass2(:,:)]);%, "showplot”,true);
error = (classes ~= [ones(2000,1);2*0ones(2000,1)1);

percent_errord = sum(error)/length(error)*100;

Training = [trainclass1(1:150,[1,2,4]); trainclass2(1:150,[1,2,4D1;
Group = [ones(150,1);2*ones(150,1)];

SVMStruct = svmtrain(Training, Group);%, “Showplot®,true);

classes = svmclassify(SVMStruct, [testclassl1(:,[1,2,4]);testclass2(:,v¥
[1,2,41)]1);%, "showplot” ,true);

error = (classes ~= [ones(2000,1);2*ones(2000,1)D);

percent_error3 = sum(error)/length(error)*100;

Training = [trainclass1(1:150,[2,4]); trainclass2(1:150,[2,41)]1;

Group = [ones(150,1);2*ones(150,1)];

SVMStruct = svmtrain(Training, Group);%, “"Showplot®,true);

classes = svmclassify(SVMStruct, [testclass1(:,[2,4]);testclass2(:,[2,4]DD1);%, "showplot®, ¢
true);

error = (classes ~= [ones(2000,1);2*ones(2000,1)]);

percent_error2 = sum(error)/length(error)*100;

Training = [trainclass1(1:150,1); trainclass2(1:150,1)];

Group = [ones(150,1);2*ones(150,1)];

SVMStruct = svmtrain(Training, Group);%, “Showplot”®,true);

classes = svmclassify(SVMStruct, [testclassl1(:,1);testclass2(:,1)]);%, "showplot”,true);
error = (classes ~= [ones(2000,1);2*0ones(2000,1)]);

percent_errorl = sum(error)/length(error)*100;

plot([percent_errorl,percent_error2,percent_error3,percent_error4])
title("Figure 2.2) Classifier Error Performance Using SVM")

xlabel (*Number of Feature Vectors"®)

ylabel ("Percent Error from 4,000 Samples®)

% ECE662

% Homework 2

% Problem 3

close all; clear all; clc;
tic

load("svmguide._mat*®);

% http://www.csie_ntu.edu.tw/~cjlin/libsvmtools/datasets/binary._html#svmgui
% del taking svmguidel data
% data 3089x10

% test 4000x10

% trainclassl 2000x4

% trainclass2 1089x4

% testclassl 2000x4

% testclass2 2000x4

%% Project 4 dimensions to two (two to one and two to one)
traincll = trainclass1(1:1000,1:2);

traincl2 = trainclass2(1:1000,1:2);

testcll = testclass1(1:1000,1:2);

testcl2 testclass2(1:1000,1:2);

trainc2l = trainclass1(1:1000,3:4);
trainc22 = trainclass2(1:1000,3:4);
testc2l = testclass1(1:1000,3:4);
testc22 testclass2(1:1000,3:4);

% Combine features 1&2 into 1
ml = mean(traincll,l); %mean of columns
m2 = mean(traincl2,1); %mean of columns
n = length(ml);
%scatter
% Sw = sum yi elements of class 1 (yi-mi)*(yi*-mi®)
yml = traincll;
ym2 = traincl2;
%subtracting the means
for x = 1:n
ymi(:,x) = yml(:,x)-m1(X);
ym2(:,X) ym2(:,x)-m2(xX);

end

Swil = ((yml1®)*(yml));

Sw2 = ((ym27)*(ym2));

Sw = Swl+Sw2;

% w = projection line;

wo = Inv(Sw/(Sw(l,1)))*(m1-m2)";
w0 = wo/(w0(1));

trainl = zeros(1000,3);

train2 = zeros(1000,3);

testl = zeros(1000,2);

test2 = zeros(1000,2);
trainl(:,1) = (wO"*traincll®)";
train2(:,1) = (wO"*traincl2")";
testl(:,1) = (WO"*testcll™)";
test2(:,1) = (WO"*testcl2")";

% Combine features 3&4 into 1

ml = mean(trainc2l,1); %mean of columns
m2 = mean(trainc22,1); %mean of columns
n = length(ml);

%scatter

% Sw = sum yi elements of class 1 (yi-mi)*(yi"-mi")

yml = trainc2l;

ym2 = trainc22;

%subtracting the means

for x = 1:n
yml(:,x) ymi(:,x)-m1(x);
ym2(:,x) = ym2(:,x)-m2(x);

end

Swl = ((ym1®)*(yml));
Sw2 = ((ym27)*(ym2));
Sw = Swl+Sw2;

% w = projection line;

wo = Inv(Sw/(Sw(l1,1)))*(m1-m2)";

wo = wo/(w0(1));

trainl(:,2) (wO**trainc21")"
train2(:,2) = (wO"*trainc22%)"
testl(:,2) (wO"*testc2l")";
test2(:,2) (wO"*testc22")";
%%
trainl(:,3)
train2(:,3)
% Figure(l)
% hold on;

1; %corresponds
-1;%corresponds

to classl
to class2

% plot(trainl(1:100,1),trainl1(1:100,2),
% plot(train2(1:100,1),train2(1:100,2),

% % axis([0 1400 -3 .5])

% title("Figure 3.1) Sample of Training

% Figure(2)

% hold on;

% plot(testl(:,1),testl(:,2),"
% plot(test2(:,1),test2(:,2),"
% axis([0 1400 -3 .5])

% Parzen Window

r =1;

% r_max = 100;

% parzen_errors = zeros(r_max,
% for r=1:r_max

% K Nearest Neighbor knn

% Nearest Neighbor nn

k = 5;

knn_errors = zeros(100,1);

for k=1:100

ro*);
b+");

1);

"ro");
"b+7);

Data after Projecting to Two Dimensions®)

listnearl = zeros(2*k,2);%distance, value
listnear2 = zeros(2*k,2);%distance, value

distancel
distance?
distance3
distance4

zeros(1000,1);%distances to the trainl values
zeros(1000,1);%distances to the train2 values
zeros(1000,1);%distances to the trainl values
zeros(1000,1);%distances to the train2 values

parzenla = zeros(1000,1);%probability of class 1 using parzen
parzenlb = zeros(1000,1);%probability of class 1 using parzen

parz
parz
parz
parz
knnl
knn2
nnl
nn2
% in
% iIn

%For
for

en2a = zeros(1000,1);%probability of class 2 using parzen
en2b = zeros(1000,1);%probability of class 2 using parzen
enl = zeros(1000,1);%correct decision of parzen for classl
en2 = zeros(1000,1);%correct decision of parzen for class?2

= zeros(1000,1);%correct decision of k nearest neighbors for classl
zeros(1000,1);%correct decision of k nearest neighbors for class2
= zeros(1000,1);%correct decision of nearest neighbor for classl
= zeros(1000,1);%correct decision of nearest neighbor for class2
dexl = zeros(1000,2*k);
dex2 = zeros(1000,2*k);

each of the 1000 test points (both classes)
X = 1:1000
%for test data in classl
%distances to all training points
distancel = sqrt((trainl(:,l)-testl(x,1)) . ."2+(trainl(:,2)-testl(x,2)).72);
distance2 = sqrt((train2(:,l)-testl(x,1)) . ."2+(train2(:,2)-testl(x,2)).72);

[distancel] = sort(distancel, "ascend”);%sort distances to training classl
[distance2] = sort(distance2, "ascend");%sort distances to training class2

parzenl(x) = (sum(distancel<r)-sum(distance2<r))>0; %if more classl than class2
parzenla(x) = sum(distancel<r);%number of class 1 in window (hit)
parzenlb(x) = sum(distance2<r);%number of class 2 in window (miss)

%concatenate the shortest distances to both classes
listnearl(l:k,1) = distancel(l:k,1);
listnearl(1l:k,2) = 1; %class 1

listnearl(k+1:2*k,1) = distance2(1:k,1);
listnearl(k+1:2*k,2) = -1; %class 2

%

[listnear indexl1l] = sort(listnearl(:,1),"ascend"); %sort for all nearest
decisionl = sum(listnearl(index1(1:k),2));

knnl(x) = decisionl>0;

nnl(x) = listnearl(index1(1),2)>0;

%for test data in class2
distance3 = sqrt((trainl(:,l)-test2(x,1)) . ."2+(trainl(:,2)-test2(x,2)).72);
distance4 = sqrt((train2(:,l)-test2(x,1)) . ."2+(train2(:,2)-test2(x,2)).72);

[distance3] = sort(distance3, "ascend”);
[distance4] = sort(distance4,"ascend”);

parzen2(x) = (sum(distance4d<r)-sum(distance3<r))>0;%if more class2 than classl
parzen2a(x) = sum(distance3<r);%number of class 1 in window (miss)
parzen2b(x) = sum(distance4<r) ;%number of class 2 in window (hit)

listnear2(1:k,1) distance3(1:k,1);
listnear2(1:k,2) = 1;

listnear2(k+1:2*k,1) = distance4(1:k,1);
listnear2(k+1:2*k,2) = -1;

%

[listnear index2] = sort(listnear2(:,1),"ascend”);
decision2 = sum(listnear2(index2(1:k),2));

knn2(x) = decision2<0;
nn2(x) = listnear2(index2(1),2)<0;

end

% Figure(3)

% subplot(4,1,1)

% plot(parzenla)

% title(["Figure 3.3.1) Number of Hits for Class 1, r
% axis([0 1000 O 40])

%

% subplot(4,1,2)

% plot(parzenlb)

% title(["Figure 3.3.2) Number of Misses for Class 1,
% axis([0 1000 O 40])

%

% subplot(4,1,3)

% plot(parzen2a)

% title(["Figure 3.3.3) Number of Hits for Class 2, r = ",num2str(r)])
% axis([O 1000 0 40])

%

% subplot(4,1,4)

% plot(parzenzb)

% title(["Figure 3.3.4) Number of Misses for Class 2,
% axis([0O 1000 0 40])

*,num2str(r)])

-
1

", num2str(r)])

= ",num2str(r)])

-
|

percentparzen = (2000-sum(parzenl)-sum(parzen2))/2000*100;

percenterrknn (2000-sum(knnl)-sum(knn2))/2000*100;

percenterrnn = (2000-sum(nnl)-sum(nn2))/2000*100;

knn_errors(k,1l) = percenterrknn;

end

figure

plot(knn_errors)

title("Figure 3.4) Decision Error Percentage vs. Number of Nearest Neighbors®)
xlabel (K, Nearest Neighbors®)

ylabel ("Decision Error Percentage®)

% parzen_errors(r,1l) = percentparzen;

% end

% figure

% plot(parzen_errors)

% title("Figure 3.2: Decision Error Percentage vs. Parzen Window Radius®)
% xlabel("Parzen Window Radius®)

% ylabel ("Decision Error Percentage")

