

ECE 662

Homework 2

April 1, 2008

Question 1: In the Parametric Method section of the course, we learned how to draw a
separation hyperplane between two classes by obtaining w0, the argmax of the cost
function J(w)=wTSBw / wTSww. The solution was found to be w0= Sw

-1(m1-m2), where m1
and m2 are the sample means of each class, respectively.

Some students raised the question: can one simply use J(w)= wTSBw instead (i.e. setting
Sw as the identity matrix in the solution wo? Investigate this question by numerical
experimentation.

In order to compare the results of changing the cost function to J(w)= wTSBw from
J(w)=wTSBw / wTSww, the within class scatter matrix Sw is set to the identity matrix. In
Matlab, two classes are created with two feature vectors of normal distribution. Equal
numbers of data points are taken from each class. The mean values for class one is set to
value [3, 3] and the mean for class two is set to [5, 5]. The one covariance matrix is set
as the identity matrix while the second is varied across the main diagonal with values
from 0.1 to 2 in increments of 0.1. For each case 300 data points are created using w0=
Sw

-1(m1-m2) for one case and w0= (m1-m2) for the second. Lastly 5,000 samples are
created and the ratio of errors for the two methods is calculated for each of the twenty
variances.

 The ratio of errors is shown in figure 1.1. The minimum ratio and maximum ratio are
0.5690 and 1.0847 respectively. This is somewhat surprising to see that the simplified
version of the cost function is sometimes better than the original.

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Variance in x

Error ratio with one fixed Σ and one varying Σ

Variance in y

(E
rro

rs
 u

si
ng

 S
w

) /
 (E

rro
rs

 u
si

ng
 S

w
 =

 I)

Figure 1.1 Error ratio of cost function using Sw / cost function not using Sw with changing
variances

One would expect that the results from the original cost function which takes the within
class scatter into account is not always better than (in two dimensions) taking the
perpendicular bisector of the means of classes. Figure 1.2 shows an example where not
taking within class scatter would cause more errors in classification than without taking
the within class scatter into account.

Figure 1.2 Example of problematic spread in 2-D

Another example is displayed in figure 1.3, where the large X and the two concentric O
circles are the means of the two classes. The perpendicular line is the hyperplane created
by taking Sw as the identity matrix and the diagonal line is using the original cost function.
This shows an example where the within class scatter is important for the decision
hyperplane.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

In conclusion, the scatter is important for creating a separation hyperplane, but the
simplified function can still yield decent results. If there is a constraint on computational
complexity, then the simplified version may still be acceptable for fast results, perhaps if
needed in real time applications.

Question 2: Obtain a set of training data. Divide the training data into two sets. Use the
first set as training data and the second set as test data.

a) Experiment with designing a classifier using the neural network approach.
b) Experiment with designing a classifier using the support vector machine

approach.
c) Compare the two approaches.
Note: you may use code downloaded from the web, but if you do so, please be sure to
explain what the code does in your report and give the reference.

Neural Networks

Matlab code was used from “ANN: DTU Toolbox” at URL
http://isp.imm.dtu.dk/toolbox/ann/. The code uses a variable number of hidden layers,
which are each hyperbolic tangent functions. Separate functions allow the output of the
code to be probabilities of the two classes. The code optimizes the weights with a
maximum a posteriori approach. This data used for this experiment, and following
experiments is taken from the website
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ and uses the “svmguide1” dataset.
This contains two classes, four features, a training size of 3,089, and testing size of 4,000.
To speed up the neural network algorithm, the data set is cropped down to 150 samples
from each class and uses all four features. The number of hidden layers is varied from 1
to 20. Figure 2.1 shows the percent error as the number of hidden layers change.

0 2 4 6 8 10 12 14 16 18 20
4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

Figure 2.1 Percent error as a function of number of hidden layers.

http://isp.imm.dtu.dk/toolbox/ann/
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvmtools/datasets/

The minimum percent error is found to be 4.4%, which occurs at nine hidden layers.
From the graph, the increasing number of hidden layers does not provide much in terms
of lowering the percent error after three hidden layers.

Support Vector Machines

For this experiment, code from Matlab’s bioinformatics toolbox is used. The same
cropped 150 samples from each class are used from the svmguide1 dataset. Matlab’s
svmclassify function uses a linear support vector machine classifier to pick a separation
plane, find the worst classified sample, move the separation plane to improve the worst
classified sample, and iteratively repeat until a convergence appears. Svmclassify
automatically classifies the test data. The end result percent error was found to be 5.8%.

Comparison

Both of these classifier approaches showed relatively low percentages of error. The
major concern is the computational cost and complexity of the algorithm. While only
150 samples were taken from each of the classes, the neural network approach took a
noticeable amount of time longer than the support vector machines.

Question 3: Using the same data as for question 2 (perhaps projected to one or two
dimensions for better visualization),

a) Design a classifier using the Parzen window technique.
b) Design a classifier using the K-nearest neighbor technique
c) Design a classifier using the nearest neighbor technique.
d) Compare the three approaches.

In order to test and compare the Parzen window, K-nearest neighbor, and nearest
neighbor classifier techniques, data is again taken from the svmguide1 dataset. To
simplify the coding, two features are used and the training and testing size is reduced to
1000 samples. Figure 3.1 shows the two dimensional locations of each of the training
samples. The first graph in figure 3.1 is the combination of both classes. The second two
graphs show the circles of class one and the plus signs of class two respectively. Figure
3.2 shows the same two dimensional locations but for the testing data.

0 50 100 150 200 250 300
0

200

400

600

0 50 100 150 200 250 300
0

200

400

600

0 50 100 150 200 250 300
0

200

400

600

Figure 3.1 Training data

0 50 100 150 200 250 300
0

200

400

600

0 50 100 150 200 250 300
0

200

400

600

0 50 100 150 200 250 300
0

200

400

600

Figure 3.2 Testing Data

Parzen Window

For the Parzen windows, the probability of each class is determined by the number of
training points within a circular radius of each test point. The class which has the larger
number of training points in the radius classifies the test sample. The radius can be
adjusted to see the variation in radius size and percent error.

After running the experiment, a radius of around 20 shows the lowest percent error for
this data. The optimal radius is dependent on the training data. If the training data is
sparser, then the optimal radius is expected to be higher than 20.

 Table 3.1 Parzen Percent Error vs. Radius

Radius Percent Error
1 46.55
5 14.75
10 8.90
15 7.90
20 7.55
30 8.00

Percent Error vs. Radius

0

5

10

15

20

25

30

35

40

45

50

1 5 10 15 20 30

Radius

P
er

ce
nt

 E
rr
or

Figure 3.3 Parzen Percent Errors vs. Radius

Looking at the number of training points within the radii of the testing points
produces the probability of being in class 1 or class 2. Figure 3.4 shows the
number of hits and misses for both classes. The first graph show the number of

class 1 hits for each of the 1000 class 1 test points and the second graph shows the
number of class 2 hits (misses) for each test point. When the level of graph 1 is
higher than the level of graph 2, then the test point is correctly labeled as class 1.
Graphs 3 and 4 shows the hits and misses for the 1000 class 2 test points. Graph
4 shows that in the same radius many hits result, so class 2 has tightly packed
sample points. Since class 2 is tightly packed, there are much fewer misses and
therefore much fewer misclassifications.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

0 100 200 300 400 500 600 700 800 900 1000
0

5

10
Number of Hits and Misses for Class 1 r = 1

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

0 100 200 300 400 500 600 700 800 900 1000
0

10

20
Number of Hits and Misses for Class 2 r = 1

 Figure 3.4 Number of hits and misses with radius 1.

K-Nearest Neighbors

For K-nearest neighbors, a value K is chosen to be a natural number. K is typically an
odd number and to determine the classification the K nearest neighbors based on a chosen
distance parameter are observed. The class with the most training points of those
neighbors is the final classification of the sample of interest. In this experiment,
Euclidean distance is the distance parameter. The K values are varied.

Using the svmguide1 data points, the K values are varied from 5, 10, and 25. Table 3.2
shows the percent error for each of the K values. For these K values, the percent error
did not change very significantly. This is because there is reasonable separation between
the two classes.

K value Percent Error (%)
5 4.6
10 4.6
25 4.8

 Table 3.2 K values with percent errors for svmguide1 data.

To better see what is occurring with K-nearest neighbors, a test is run on the applet from
http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html. In this applet the
number of samples and the K value is varied. Table 3.3 and Figure 3.5 show the results
of the experiments.

Number of Samples Number of Nearest
Neighbors (K)

Error Rate (%)

2000 5 3.3750002
2000 10 4.546875
2000 25 6.34375
2000 100 7.953125
1000 5 4.8125
1000 10 5.625
1000 25 7.296875
500 5 6.484375
500 10 7.0468745
500 25 7.8906255

Table 3.3 K nearest neighbor results from website applet.

http://www.cs.cmu.edu/%7Ezhuxj/courseproject/knndemo/KNN.html

Figure 3.5 K nearest neighbors from the website applet.

Looking at the images in figure 3.5, the images in the first and third column are the test
points along with the correct classifications. The shaded region is one class and the white
region is the other class. The second and fourth columns show the classifications after
finding the k nearest neighbors. From these, it can be concluded that the more sample
points and smaller K values yield the lowest percent error. The resolution of the output
classes is also increased with the more samples and smaller K, although the skinny
regions of the classes still cause some problems in the classification. A major assumption
with the website applet is that there are no stray points in the training data, so there are no
class 1 samples in the class 2 region. This assumption allows the applet to yield lower
percent errors than more realistic cases.

Nearest Neighbors

Nearest neighbors is a simplified case of K-nearest neighbors where K equals 1. In this
case, the same Euclidean distance parameter and the K-nearest neighbor code setting K to
be equal to 1 are used. The resulting percent error is 6.2%, which is larger than the errors
with the K-nearest neighbors.

Using the same website applet but varying the number of samples again shows the more
samples the better results. Each experiment is run twice to check the consistency of the
error rate. As the sample number increases, the consistency becomes better. Again
looking at the resulting graphs, as the number of sample point’s increase, the resolution
of the classification becomes better. At the 2000 sample case, the thin lines of each class
are nearly distinguishable.

Number of Samples Error Rate (%) 1 Error Rate (%) 2
10 24.421875 18.015627
50 14.484374 11.3125
100 10.78125 8.15625
500 6.28125 5.4062495
1000 4.171875 3.640625
2000 3.078125 3.15625

 Table 3.4 Nearest neighbors using the website applet

Figure 3.6 Nearest neighbors using the website applet

Comparison

After looking at the three classifications, Parzen windows, K-nearest neighbors, and
nearest neighbor, techniques, the K-nearest neighbor’s results showed the lowest percent
error using real world data. Parzen windows with 7.55%, K-nearest neighbors with 4.2%,
and nearest neighbors with 6.2%. There are some concerns with using the blanket
statement that the K-nearest neighbors will always yield the best. The classification
method is data dependent. So each technique has unique benefits.

As shown in the applet, if there are sharp regions of a single class, then the nearest
neighbor will best classify those regions. If there is a good separation between classes,
and sample points are not very sparse, then the K-nearest neighbors yield very good
results. If samples points are sparse, then Parzen windows may yield the best results.
Therefore it is necessary to have prior knowledge of the samples before choosing the
classification technique.

