Countability

- 1. Countable or uncountable (with proof)?
 - (a) $\bigoplus_{\mathbb{N}} \mathbb{Q} = \{(q_1, q_2...) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times ... : \text{only finitely many } q_i \text{ are non-zero.}\}.$
 - (b) $\Pi_{\mathbb{N}}\mathbb{Q} = \{(q_1, q_2...) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times ...\}$

Sets and mappings

- 2. Let $f: A \to B$, A and B subsets or \mathbb{R}^n . True or false with proof:
 - (a) $\cup f^{-1}(B_j) = f^{-1}(\cup B_j)$
 - (b) $\cap f^{-1}(B_j) = f^{-1}(\cap B_j)$ (Here the $B_j \subseteq B$ and if the arbitrary union seems troubling, use only B_1 and B_2 .)

Convexity

- 3. Let A be a convex set in \mathbb{R}^n and show A^o and \bar{A} are convex also.
- 4. (a) Set $||x||_p := (\sum_{j=1}^n |x_j|^p)^{1/p}$ for every $x = (x_1, ..., x_n) \in \mathbb{R}^n$ and every $1 \le p < \infty$. Show $d_p(x, y) := ||x y||_p$ is a metric. (Notice, p = 2 is our usual Euclidean metric on \mathbb{R}^n .)
 - (b) Now on \mathbb{R}^2 let $A := \{x : ||x||_1 \le 1\}$, and show A is convex in (\mathbb{R}^2, d_1) but not in the usual metric, (\mathbb{R}^n, d_2) .
- 5. (Lempert) Let A be an open, non-empty, convex set in \mathbb{R}^n , and show $A_r := \{x \in A : d(x, A^c) < r\}$ is also convex.
- 6. For any open $G \subseteq \mathbb{R}$, show G is a countable union of balls, i.e. $\exists \{B_{r_i}(x_i)\}_{i\in\mathbb{N}}$ with $G = \bigcup_i B_{r_i}(x_i)$.

Metric Spaces and Topology

- 7. True of False:
 - If (X, d) is a non-empty metric space, and $x \in X$ then $\overline{N_1(x)} = \{y : d(x, y) \le 1\}$

8. Recall, if G_{α} are open, and C_{α} are closed, then we know $\cup G_{\alpha}$ is open and $\cap C_{\alpha}$ is closed.

Exhibit an example of open sets, G_{α} in say \mathbb{R}^n such that $\cap G_{\alpha}$ is not open.

Notice, by de Morgan's Law, we obtain a sequence of closed C_{α} with $\cup C_{\alpha}$ not closed.

- 9. Consider \mathbb{Z} the integers as a subspace of \mathbb{R} . Let $A \subseteq \mathbb{Z}$. Is A open in \mathbb{Z} (i.e. is A open relative to \mathbb{Z} ?) Is A open in \mathbb{R} . What about closed relative to \mathbb{Z} ? \mathbb{R} ?
- 10. Prove a nonempty perfect subset of \mathbb{R} is uncountable.
- 11. Does there exist a dense proper open subset of \mathbb{R} ?
- 12. For each $j \in \mathbb{N}$ let G_j be a dense open subset of \mathbb{R}^n . Show $\bigcap_{j=1}^{\infty} G_j$ is non-empty.