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Outlines of the Project 

A) What is a Markov Chain  

-Stochastic process 

-Definition of Markov Chain 

-Concrete examples and several properties 

B)  What can we do with it? 

 -Transition Probabilities and Transition Matrix 

 -Computation with Transition Matrix 

 -Matrix limits and Markov Chains 

C) Why Useful 

 -Applications in Real Life with examples and computation 

 

1. What is a Markov chain? 

To introduce the answer this question, we should first realize the definition of stochastic 

process, because a Markov Chain is a special type of a stochastic process. 

 

- Definition of a stochastic process: 

 “A sequence of random variables X1, X2… is called a stochastic process with discrete time 

parameter” [1] 

 

Explanation: We may think X1, X2… as samples of an experiment. In stochastic process, they 

represents states of process. Clearly, X1 is called the initial state, and Xn represents the state 

at time n. In the introductory probability course, we are familiar with the models when X1…Xn 

are independently identical distributed (iid) random variables. However, note states do not 

necessarily have to be independently identical distributed. I think this note is especially 

important to eliminate confusion for first time learners in the Markov Chain.  

 

- Definition of a Markov chain   

A stochastic process is a Markov Chain if, for each time n, the conditional distributions of all 

Xn+j given X1…Xn depend only on Xn instead of X1…Xn-1. In majority or basic cases, we 

consider j=1. That is, the probability distribution of random variable Xn is determined by the 

value from the (n-1)th state (Xn-1). This means the distribution of future states depend only 

on the present state, and has nothing to do with the past states. 

*Note: In a Markov Chain, the value of present state only determines the “probability 

distribution of the future state”, it does not determine exactly the value of the future states. 

 

- A concrete example 

Let’s consider a person has two choices of drinking for his breakfast every morning, milk or 

coffee. We let Xi=1 if the person chooses to drink milk on the ith morning. Let Xi=2 if the person 

chooses to drink coffee on the ith morning. In this case, the sequence of cases (random 

variables) X1, X2… is a stochastic process with two possible states at each time. To make it be 

a Markov chain, consider people are usually preferring switching rather than repeating, and 

he prefers a little bit more on milk than coffee. Thus assume probability of that person 



choosing milk today given he chose milk yesterday is 0.3. The probability that he chooses 

coffee given he chose coffee yesterday is 0.2. Then this sequence of states becomes a Markov 

Chain.  

𝑃(𝑋𝑛+1 = 1|𝑋𝑛 = 1) = 0.3,  𝑃(𝑋𝑛+1 = 2|𝑋𝑛 = 1) = 1 − 0.3 = 0.7 

𝑃(𝑋𝑛+1 = 1|𝑋𝑛 = 2) = 1 − 0.2 = 0.8, 𝑃(𝑋𝑛+1 = 2|𝑋𝑛 = 2) = 0.2 

 

2. What can we do with it 

- Transition probabilities and Transition Matrix 

We define 𝑃𝑖𝑗 to be the probability that the future state is j given the present state is i. 

𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖) = 𝑃𝑖𝑗 

They are called transition distributions. If a Markov Chain’s transition distributions do not 

depend on n (just like the above example), then we call the Markov Chain has stationary 

transition distributions. 

In particular, a Markov Chain with stationary transition distributions can be presented by 

a Transition Matrix. For instance, the transition Matrix for the above Example is: 

[
0.3 0.7
0.8 0.2

] 

More generally: P = [
𝑃11 ⋯ 𝑃1𝑘

⋮ ⋱ ⋮
𝑃𝑘1 ⋯ 𝑃𝑘𝑘

] 

General Rule for nth state distribution: 𝑥𝑛 = 𝑥𝑛−1𝑃 

Important Notes: 𝑃𝑖𝑗  in the above matrix represents 𝑃(𝑋
𝑛+1

= 𝑗|𝑋𝑛 = 𝑖) , this 

turns out the result that the sum of every entries in each row is 1 (This follows the same 

notation as my probability textbook and most professional articles I have searched in the 

electronic library). However, in some textbooks (for example, my linear algebra textbook) 

and resources I found on the Internet, 𝑃𝑖𝑗 in the Matrix = 𝑃(𝑋𝑛+1 = 𝑖|𝑋𝑛 = 𝑗) , this 

means the sum of every entries in each column is 1. To avoid confusion, we are going to 

follow the first notation style in this note. 

 
The transition matrix makes computation in a Markov Chain easier. In the above breakfast 

example (it has stationary transition probability), if we are given that person drunk milk at 

time n, 𝑋𝑛 = 1, we can determine the probability distribution of 𝑋𝑛+3. The initial state 

distribution can be written as a row vector : [1   0]. 

𝑥𝑛+3 = 𝑥𝑛+2𝑃 = (𝑥𝑛+1𝑃)𝑃 = ((𝑥𝑛𝑃)𝑃)𝑃 = 𝑥𝑛𝑃3 = [1   0] [
0.3 0.7
0.8 0.2

]
3

 

𝑥𝑛+3 = [0.475    0.525] 



This means given the person drunk milk today, three days later, he has probability 0.475 

to drink milk and 0.525 to drink coffee. 

 

- Matrix Limits and Markov Chain 

In the Linear Algebra courses (MA351 and MA353 in Purdue University), we know that a 

diagonalizable Matrix A can be represented in a form A = QD𝑄−1.  

D = [[
𝑟1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑟𝑛

]], where 𝑟1 … 𝑟𝑛 eigenvalues of the matrix A, and Q are has columns 

corresponding to the eigenvectors.  

𝐴𝑛 = 𝑄𝐷𝑄−1𝑄𝐷𝑄−1 … 𝑄𝐷𝑄−1 = 𝑄𝐷𝑛𝑄−1 

lim
𝑛→∞

𝐴𝑛 = lim
𝑛→∞

(𝑄𝐷𝑛𝑄−1) 

Since D is a diagonal matrix, it’s very easy to compute its powers. In the above breakfast 

example, we are able to compute the matrix limits. 

𝑃 = [
0.3 0.7
0.8 0.2

];  

The Characteristic Polynomial for P is: 

(0.3 − r)(0.2 − r) − 0.8 ∗ 0.7 = 0;  𝑟1 = 1; 𝑟2 = −0.5; 𝑇ℎ𝑢𝑠, 𝐷 = [
1 0
0 −0.5

] 

Solving the linear systems, eigenvectors for P are: 

[
1
1

]  𝑎𝑛𝑑 [
7

−8
] ; 𝑇ℎ𝑢𝑠, 𝑄 = [

1 7
1 −8

] 

lim
n→∞

Pn = lim
𝑛→∞

𝑄𝐷𝑛𝑄−1 = lim
𝑛→∞

[
1 7
1 −8

] [
1 0
0 −0.5

]
𝑛

[
1 7
1 −8

]
−1

= lim
𝑛→∞

[

8 + 7(−0.5)𝑛

15

7

15
8 − 8(−0.5)𝑛

15

7 − 8(−0.5)𝑛

15

] = [

8

15

7

15
8

15

7

15

] 

We put the initial condition into the equation: 

[1   0] [

8

15

7

15
8

15

7

15

] = [
8

15
   

7

15
] 

In fact, we will always get [
8

15
   

7

15
] whatever he drinks milk or coffee in the first day. This 

indicates that in a long time period, he will drink milk in 8/15 of days, and drink coffee in 

7/15 of days. 

Use MatLab to verify our result:  



  
 

3. Why are lots of people talking about it? 

- Applications of Markov Chain in Science and Real Life 

Markov Chains have lots of applications in the scientific research, because many cases can 

be approximately modeled as a Markov Chain. In economics and finance, Markov Chains 

can help investors to predict the volatility of asset returns. In biology, Markov chains can 

be used in population genetics research. In the simplest case, Markov chains are used in 

weather predictions. 

We now construct a very simple sample of weather prediction. Assume a city has 3 

weather states: Sunny, Rainy and Overcast. This corresponds to the states space S= {0,1,2}. 

Suppose that the probability distribution of the next day only depends on the weather 

state of today (This is relatively reasonable in real cases), and given that: 

𝑃(𝑋𝑛+1 = 𝑆𝑢𝑛𝑛𝑦|𝑋𝑛 = 𝑆𝑢𝑛𝑛𝑦) = 0.5 

𝑃(𝑋𝑛+1 = 𝑅𝑎𝑖𝑛𝑦|𝑋𝑛 = 𝑆𝑢𝑛𝑛𝑦) = 0.2 

𝑃(𝑋𝑛+1 = 𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡|𝑋𝑛 = 𝑆𝑢𝑛𝑛𝑦) = 1 − 0.5 − 0.2 = 0.3 

𝑃(𝑋𝑛+1 = 𝑆𝑢𝑛𝑛𝑦|𝑋𝑛 = 𝑅𝑎𝑖𝑛𝑦) = 0.6 

𝑃(𝑋𝑛+1 = 𝑅𝑎𝑖𝑛𝑦|𝑋𝑛 = 𝑅𝑎𝑖𝑛𝑦) = 0.3 

𝑃(𝑋𝑛+1 = 𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡|𝑋𝑛 = 𝑅𝑎𝑖𝑛𝑦) = 1 − 0.6 − 0.3 = 0.1 

𝑃(𝑋𝑛+1 = 𝑆𝑢𝑛𝑛𝑦|𝑋𝑛 = 𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡) = 0.2 

𝑃(𝑋𝑛+1 = 𝑅𝑎𝑖𝑛𝑦|𝑋𝑛 = 𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡) =0.6 

𝑃(𝑋𝑛+1 = 𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡|𝑋𝑛 = 𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡) = 1 − 0.2 − 0.6 = 0.2 

 



Transition Matrix P: 

[
0.5 0.2 0.3
0.6 0.3 0.1
0.2 0.6 0.2

] 

 Suppose we know the weather is overcast this Monday (Today), then we can determine the 

probability distribution of weathers in next several days (like Weather forecasting on TV). For 

instance, on Wednesday: 

𝑥𝑛+2 = 𝑥𝑛𝑃2 = [0 0 1] [
0.5 0.2 0.3
0.6 0.3 0.1
0.2 0.6 0.2

] [
0.5 0.2 0.3
0.6 0.3 0.1
0.2 0.6 0.2

] = [0.5 0.34  0.16] 

This means on Wednesday, probability is 0.5 for sunny, 0.34 for rainy and 0.16 for overcast given 

that Monday is overcast. 

We can also use matrix limits to determine the long-term probability following the procedure in 

Part II. Since it’s a little bit complicated to diagonalize 3*3 matrix by hand, especially for matrix 

with complex eigenvalues and eigenvectors, we use matlab: 

 

lim
𝑛→∞

𝑃𝑛 = lim
𝑛→∞

(𝑄𝐷𝑛𝑄−1) = [

50/107 34/107 23/107
50/107 34/107 23/107
50/107 34/107 23/107

] 

Therefore, for a single day randomly picked up from the calendar, this city has the probability 

50/107 of sunny weather, 34/107 for rainy weather and 23/107 for overcast weather. 

Verifying the result by Matlab, take n=10000: 



 
 

The weather model made up by me is just a very simple example in real application related to 

Markov Chain, many other models, such as PageRank in Google, are also using the Markov Chain. 

Yet it’s too complicated somehow to show on this Webpage. Besides, we are also not able to talk 

about some further topics of Markov Chain, such as Hidden Markov Model or Markov Chain in 

continuous time. 
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