MA544 Qual Review Problems $2 \quad$ Bridges Summer 08

1. Let $f \in B V(I)$. Show f is the difference of two monotone increasing functions.
2. Let $0<p<1$. Set $\left\|\|_{*}: \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}\right.$ by

$$
\|(x, y)\|_{*}=|x|^{p}+|y|^{p}
$$

and show that $\left\|_{-}\right\|_{*}$ induces a new metric. (Hint: Let $a \geq 0$, and consider $\left.f(t)=a^{p}+t^{p}-(a+t)^{p}\right)$. Is $\left\|_{-}\right\|_{*}$ a norm? What about $\|(x, y)\|_{p}=\left(|x|^{p}+|y|^{p}\right)^{\frac{1}{p}} ?$
3. Continuity of measures from below: Let (X, \Re, μ) be a measure space. Show that if $E_{n} \in \Re, E_{n} \subseteq E_{n+1}$ then $\lim \mu\left(E_{n}\right)=\mu\left(\cup E_{n}\right)$.

Continuity of measures from above (sometimes): Now let $E_{n} \supseteq E_{n+1}$. Suppose $\exists n$ such that $\mu\left(E_{n}\right)<\infty$ or that $\mu\left(\cap E_{n}\right)=\infty$. Show $\lim \mu\left(E_{n}\right)=\mu\left(\cap E_{n}\right)$. Find a counter example to show μ is not continuous from above; that is, $E_{n} \supseteq E_{n+1}$ and $\lim \mu\left(E_{n}\right)>\mu\left(\cap E_{n}\right)$.
4. Prove that f is lower semicontinuous if and only if $\{x \in \mathbb{R}: f(x) \leq \lambda\}$ is closed for every $\lambda \in \mathbb{R}$. Conclude that lower and upper semicontinuous functions are Lebesgue measurable.
5. Let f be a nonnegative funciton in $L^{1}\left(I_{0}\right)$ such that for each $n=$ $1,2, \ldots$,

$$
\int_{0}^{1} f(x)^{n} d x=\int_{0}^{1} f(x) d x
$$

Show that $f(x)=\chi_{E}(x)$ almost everywhere for some measurable set $E \subset I_{0}$.
6. Suppose that $\left\{I_{n}\right\}$ is a sequence of disjoint nonempty open intervals contained in $[1 / 2,1]$ such that $m\left(\bigcup_{n=1}^{\infty} I_{n}\right)=\frac{1}{2}$. If we write $I_{n}=$ $\left(a_{n}, b_{n}\right)$, prove that

$$
\sum_{n=1}^{\infty}\left(\frac{1}{a_{n}}-\frac{1}{b_{n}}\right)=1
$$

7. Let C be a compact subset of \mathbb{R} and assume that $f: C \rightarrow \mathbb{R}$ satisfies the following: for every $\alpha \in \mathbb{R}$, the set $\{x \in C: f(x)<\alpha\}$ is open in C. Show that there exists $x_{0} \in C$ such that $f\left(x_{0}\right)=\sup _{x \in C} f(x)$.
8. (2-1) Let (X, d) be a metric space.
(a) For (nonempty) $F \subset X$, let $f(x)=d(x, F)=\inf \{d(x, y): y \in F\}$. Show that f is continuous.
(b) Let K and F be nonempty subsets of X such that K is compact. Show that there is a p in K such that

$$
d(p, F)=\inf \{d(x, y): x \in K, y \in F\}
$$

(c) Asumme $K \subset U \subset X$ where K is compact and U is open. Show that there is an $r>0$ such that $x \in K$ and $d(x, y)<r$ imply $y \in U$.
9. If $f \in C[a, b]$ and one of its derivatives (say D^{+}) is everywhere nonnegative on (a, b), then f is nondecreasing on $[a, b]$.
10. Decimal expansions in base b: If b is an integer larger than 1 and $0<x<1$, show that there exist integer coefficents, $c_{k}, 0 \leq c_{k}<b$, such that

$$
x=\sum_{k=1}^{\infty} \frac{c_{k}}{b^{k}}
$$

Show this expansion is uniue unless $x=\frac{c}{b^{k}}$, when there are two expansions.

