For signals,

Energy and power can be denoted as the following:

$$E_{\infty} = \int_{-\infty}^{\infty} |x(t)|^2 dt$$
$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

With x(t) being the signal. Note that power is derived from its definition, where power is the amount of work/energy over the time duration.

In this case, $E_{\infty} > 0$ due to the nature of signal being energy that is absorbed and not generated. In other words, signals are a passive energy that can be seen from the equation where the absolute of the original signal was taken into measure.

From this, $P_{\infty} \ge 0$ because by definition, power is the amount of energy absorbed over the time duration. Since a time duration could never be a negative value, therefore if E_{∞} is a positive value, $P_{\infty} \ge 0$ where

1. $P_{\infty} = 0$ happens when E_{∞} is a finite value,

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

As $T \to \infty$, $\left\{ \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \right\} \cong 0$

- 2. $P_{\infty} > 0$ when $E_{\infty} = \infty$.
- By Muhammad Aizuddin Zulkifli (mzulkifl) ECE301 Summer 2009