
Question 1

In the Parametric Method section of the course, we learned how to draw a separation hyperplane
between two classes by obtaining w0, the argmax of the cost function / . The
solution was found to be , where m1 and m2 are the sample means of each class,
respectively.

Some students raised the question: can one simply use instead (i.e. setting Sw as the
identity matrix in the solution w0? Investigate this question by numerical experimentation.

Background & Method

Fisher's linear discriminant is a classification method that projects high-dimensional data onto a line
xwy T=

and performs classification in this one-dimensional space. The goal is to find w such that the

projection maximizes the distance between the means of the two classes while minimizing the variance
within each class. Thus, we can write the problem as

 →)(21
1 mmSw Wopt −∝ −

where is “between class scatter matrix” and ∑
 is “within class scatter matrix”.

In this problem, we want to compare the projection data using Σ Σ (Σ is the covariance of class
i) to .

Experiment & Analysis

We considered two dimensional datasets with two classes. We constructed our experiments based on two
different scenarios, where Case 1 contains non-separable data and Case 2 contains separable data.

Case 1:

mean 1 0
0 , mean 2 0

0 , standard deviation 1 1 0
0 1 , standard deviation 2 1 0

0 1

150 samples were generated for each class.

Figure 1a

Figure 1b

Figure 1c

Figure 1a shows the 2D non-separable data, Figure 1b is the optimal projection given and
Figure 1c is the results obtained by considering . We inspected from the results that by
setting , the optimal solution wopt is normalized, whereas when , the range of wopt
became “arbitrary”. However in the Fisher’s Linear Discriminating analysis, we are only interested in
direction of projection, the resulting range of the project is not as important. In the following case we see
bigger difference between the two situations both in the between class separation and in the within class
separation.

Case 2:

mean 1 0
3 , mean 2 5

0 , standard deviation 1 0.5 0
0 0.5 , standard deviation 2 2 1

1 1

150 samples were generated for each class.

Figure 2a

Figure 2b

Figure 2c

Figure 2a shows the 2D separable data, Figure 2b is the optimal projection given Σ Σ and
Figure 2c is the results obtained by considering . In this second case, when we set ISw = the

algorithm only optimizes the term wSw B
T , and thus the dimension with larger |m_1-m_2| will be chosen

(larger between classes). Additionally, in this case the algorithm does not take into consideration the
variance within class scatters; this is why we see clearly that in this situation the within projected classes
plot is less compacted in comparison with the situation where we set Σ Σ . Hence the results
using the optimal Fisher’s solution show that the classes are better separated.

Question 2

Obtain a set of training data. Divide the training data into two sets. Use the first set as training data and
the second set as test data.

a) Experiment with designing a classifier using the neural network approach.

b) Experiment with designing a classifier using the support vector machine approach.

c) Compare the two approaches.

a) Neural Network

Background & Method

In this section we implemented an artificial multilayer neural network with one hidden network, in
particular, the Back Propagation network, which is widely used and on which many others are based [1].
An illustration is shown in Figure 3.

Figure 3 An example of ANN

The Back Propagation algorithm is based on the gradient descent error with the following steps:

• Select a network architecture

• Initialize the weights to small random values

• Compute the corresponding outputs according to the training set

• For each epoch and each training example

o Input the training example to the network and compute the network outputs

o For each output unit k, we compute its error

))(1(kkkkk outtaroutout −−←δ

o For each hidden unit h, we compute its error

 ∑
∈

−←
outputsk

kkhhhh woutout δδ ,)1(

o Update each network weight jiw ,

jijji

jijiji

xw
www

,,

,,,

ηδ=∆

∆+←

Through each iteration, the algorithm minimizes the error between the targeted output and the real output.
We initialized the weights near to zero for convergence purposes, and set the algorithm to terminate when
the change in the criterion function J(w) (a function of the error) is smaller than some preset value. We
employed the sigmoid activation function as our output function .

For this experiment we have taken two different Gaussian classes or patterns, and we have divided them
using one part as a training set and the other one as a test set. The goal is to verify that error training
decreases as a function of epochs and the error in the test data decreases too, but is higher than the
previous one. We have experimented with several network configurations (different number of nodes).

Experiment & Analysis

Case 1:

Mean1=-1. Mean2=1. Standard deviation1= 2 .Standard deviation2= 2 . 200 training samples and 200
testing samples.

Figure 4 Training error as a function of epochs

Table 1 Sample training error at different epochs

Number of nodes 2 epochs 8 epochs 16 epochs 20 epochs
No. 1 0.3481 0.0817 0.0368 0.0278
No. 2 0.2500 0.0625 0.0313 0.0250
No. 3 0.5000 0.1250 0.0625 0.0500
No. 4 0.3037 0.0714 0.0326 0.0249

Case 2:

Mean1=-3. Mean2=3. Standard deviation1= 3 .Standard deviation2= 3 . 200 training samples and 200
testing samples.

Figure 5 Training error as a function of epochs

Table 2 Sample training error at different epochs

Number of nodes 2 epochs 8 epochs 16 epochs 20 epochs
No. 1 0.2506 0.0626 0.0313 0.0251
No. 2 0.2500 0.0625 0.0313 0.0250
No. 3 0.2556 0.0635 0.0316 0.0252
No. 4 0.2689 0.0663 0.0326 0.0258

It is noted that the correct way to train the network is to apply the training samples of the first class first
and change the weights in the network ONCE. Next to apply the training samples of the second class.
Once we have all the classes trained once, we return to the first one again and repeat the process until the
stop criterion is achieved. Figure 4 and 5 showed plots f training error as functions of epochs, while
Table 1 and 2 gave numeric values at sample epochs. The different cases represent different network
configurations. We define N1= number of nodes in the first layer, N2 = number of nodes in the hidden
layer, N3 = number of nodes in the last layer. As stated in the experiments, in all the simulations we have
taken half of samples as training samples and the other half for testing purposes. So we see that for small
number of epochs the error training is small when use more nodes, regardless at which layer they are.
This is due to the larger number of weights (order of freedom) that it used.

b) Support Vector Machine

Background & Method

Support Vector Machine (SVM) is a supervised learning method commonly used in pattern classification.
Viewing the input data as two sets of vectors in an n-dimensional space, an SVM will construct a
separating hyperplane in that space, one which maximizes the "margin" between the two data sets. To
calculate the margin, we construct two parallel hyperplanes, one on each side of the separating one, which
are "pushed up against" the two data sets. Intuitively, a good separation is achieved by the hyperplane that
has the largest distance to the neighboring data points of both classes.

Here, we aimed to learn the mapping: YX a , where Xx∈ is a feature (data point) and Yy∈ is a
class label. The goal is to find a function which minimizes an objective such as: Training Error +
Complexity Term. For this experiment we chose the following formulation:

 ∑ ∑−ΦΦ=
ji i

iijiji yxxD
,

)()(
2
1)(min ααααα where)()()(jijiji xxyyxx =ΦΦ

 Subject to these constraints: Ci ≤≤ α0 k∀ and ∑ =
i

ii y 0α

The cost function is minimized via MATLAB function quadprog, which solves quadratic programming
problems.

We define: ∑=
i

iii xyw α , and IIII wxyb −−=)1(ε where }{max iiaI α= .

Note that all data points having iα >0 will be the support vectors. Then the classification rule is defined as:

)(),,(bxwsignbwxf −⋅=

Experiment & Analysis

Similar to previous experiment, we generated a pseudo-random sample points, which generate normally
distributed random numbers N(µ,σ) and separated into two different labeled classes. As in the neural
network classifier we show the performance of this classifier by showing its error training and error test.
In this case we have carried out two experiments: one set with data points more compacted and the other
with a more “relaxed” location, and we change different simulation parameter to examine the behavior of
our classifier.

Case 1: Mean1=1. Mean2=-1. Standard deviation1= 2 .Standard deviation2= 2 . Using 500 samples
to train the classifier, and 500 samples to test it.

Figure 6a Sample data Figure 6b Classification error

Figure 6c # of misclassification Figure 6d # of support vector

Case 2: Mean1=3. Mean2=-3. Standard deviation1= 3 .Standard deviation2= 3 . Using 500 samples of
each class to train the classifier, and 500 samples to test it.

Figure 7a Sample data Figure 7b Classification error

Figure 7c # of misclassification Figure 7d # of support vector

From the results in both cases we can conclude that, for our data points, the parameter C may have the
optimal value as it gets larger, so when working with Gaussian data we may not need to know a priori the
problem under consideration since in both cases the trend as far as C is concerned is the same.
Surprisingly, the results in terms of number of misclassification for small C values are quite unexpected.
In the first case, where the data is more compacted, we have less number of misclassified points in the
second case, and intuitively we would have expected different results (other way around). Moreover,
when the number of training samples was examined we observed that the resulting optimization problems
are dependent upon the number of training examples. As such, when this data is large other methods for
speeding up the algorithm should be addressed. The results in terms of the error are shown in the
following section along with the neural network classifier error.

c) Comparison between Neural Network classifier and Support Vector Machine classifier

In this section we briefly discuss the performance of both the neural network classifier and the SVM
classifier in terms of the test error performance. Note though, that there is no perfect comparison between
these methods, here we have focused on the error performance for different situations.

Table 3. Performance analysis of Neural Network and Support Vector Machine

P(e) Neural Network SVM

Case 1 0.6060

2 epochs

0.0855

8 epochs

0.0319

To inf.

29.7119

C=0.1

0.276

C=10

0

C= inf.

Case 2 0.5763

2 epochs

0.0625

8 epochs

0.0253

To inf.

43.9958

C=0.1

35.7721

C=10

35.7721

C=inf.

For our set-up we obtained the results shown above, where the SVM classifier performed better in one
case since it achieves smaller error values for some C’s than the convergence error (best case) of the
neural network classifier. However, in the other case, the NN performs much better. In both cases, NN is
more constant in terms of error performance.

However, in terms of computational time, the neural network classifier performed much faster, and this is
something to take into account for large data sets.

Question 3

Using the same data as for question 2 (perhaps projected to one or two dimensions for better
visualization),

a) Design a classifier using the Parzen window technique.

b) Design a classifier using the K-nearest neighbor technique

c) Design a classifier using the nearest neighbor technique.

d) Compare the three approaches.

a) Parzen Window

Background & Method

Parzen window approach consists of estimating densities by temporarily assuming that the region nR is a

d-dimensional hypercube. If nh is the length of an edge of that hypercube, then its volume is given by
d
nn hV = .

In the simplest case, if the window function is a unit function. Then, the estimate of the density at x is
given as:

 ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

i n

i

n
n h

xx
Vn

xp
1

11)(φ

And by unit function we mean:

⎩
⎨
⎧ −≤

=
otherwise

djv
v j

,0
,...,1;2/1||,1

)(φ

)(xpn expression suggests a general approach to estimating density functions. For Parzen window

method, the choice of the hypercube volume has an important effect on)(xpn . If nV is too large, the

estimate will suffer from too little resolution; if nV is too small, the estimate will suffer from too much

statistical variability. With a limited number of samples, the best we can do is to seek some acceptable
compromise. However, with an unlimited number of samples, it is possible to let nV slowly approach zero

as n increases and have)(xpn converge to the unknown density).(xp

Due to the Gaussian nature of our test and training data, the Parzen window is designed using the
following function:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

2
exp

2
1)(

2vv
π

φ

Using
n

hhn
1= , where 1h is a design parameter we can obtain the estimate of the density expressed as

follows:

 () ()()∑
=

−−−∝
n

i
ni

T
inn hxxxx

nhn
xp

1

2

1

)2/()(exp
/

11)(

Experiment & Analysis

Similar to Question 2, two classes of data were generated, half of which was used as training data and the
other half is used as test data. These data were generated using Gaussian distributed random number
generator in MATLAB. Note that for an easy visualization of the results we opted for the 1-dimensional
case. To see the performance of our classifier we have carried out several simulations using different
lengths of data samples and different hypercube sizes. We used the following statistical parameters to
generate our sample points both training and test. Mean1=1. Mean2=-1. Standard deviation1=

2 .Standard deviation2= 2 .

We first estimate the density function given the training points. Three sample sizes and hypercube sizes
were used. N = sample size (e.g. 1000, 10000, 100000) and h1 = hypercube size (e.g. 0.1, 1, 5).

Figure 8a N=1000, h1=0.1 Figure 8b N=1000, h1=1 Figure 8c N=1000, h1=5

Figure 8d N=10000, h1=0.1 Figure 8e N=10000, h1=1 Figure 8f N=10000, h1=5

Figure 8g N=100000, h1=0.1 Figure 8h N=100000, h1=1 Figure 8i N=100000, h1=5

It can be seen from the above figures that the results depend on both N and h1. As N increases the
estimate matches better with the true density function, and as h1 decreases the estimated density function
becomes thinner. Therefore, once we have tested several estimates of density functions using the training
data we can classify the data test by Parzen window method. To do so, we first need to estimate the a
posteriori probability of the data test given the training set, i.e.,)|(xwP i . Thus, using the total joint
probability theorem we can denote:

∑
=

= c

j
jn

in
in

wxp

wxpxwP

1

),(

),()|(

Where),(in wxp is the estimate for the joint probability),(xwP i , that can be thought as if we place a

cell of volume nV around the training set and capture k samples, ik of which turn out to be labeled .iw
Roughly speaking the estimate of the posteriori probability that iw is the state of nature is merely the
fraction of the samples within the cell that are labeled .iw Therefore, to get a minimum error expression
we select the category most frequently represented within the cell. Note this approach is highly dependent
on the nV . In Table 4, we compared the error probability using the Parzen Window method for different
sample size and hypercube size.

Table 4 Comparison of probability of error using Parzen Window

P(e) N = 1000 N = 10000 N = 100000
h1 = 0.1 0.2800 0.2812 0.2539
h1 = 1 0.2350 0.2473 0.2386
h1 = 5 0.2690 0.2426 0.2362

b) K-nearest Neighbor

Background & Method

The idea of the K-Nearest Neighbor technique consist of estimating p(x) from a set of training samples
where a cell is centered around x and it grows until captures nk samples, where nk is function of n

(generally trainingnkn _= is good enough, n_training=n/2). Obviously the key point is to set nk to go
to infinity as n goes to infinity as well, assuring that simple nkn / is a good estimate of the probability that
any given point falls in the cell of volume nV .

Experiment & Analysis

In order to keep consistency in data analysis, we considered 1-dimensional case and particularly the same
sample data as we used in Parzen window method. Therefore, the dataset had the following parameters:
Mean1=1, Mean2=-1, Standard deviation1= 2 , Standard deviation2= 2 , and n_training=nk , e.g.
n_training = 1000, 10000, 100000, 1000000.

Figure 9a N=1000 Figure 9b N=10000

Figure 9c N=100000 Figure 9d N=1000000

We classify the test data according to the following method:

• We estimate the probability)|(iwxP , i=1 and 2, as
V

nkwxp i
in

/)|(=

• We compare)|(1wxP and)|(2wxP to choose the larger one as the class. We ignore prior
probabilities since we assume them equal.

Table 5 showed the results of the performance of the K-Nearest Neighbor classifier in terms of P(e) as
function of the length of our data set.

Table 5. Comparison of probability of error using kNN

P(e) N = 1000 N = 10000 N = 100000 N = 1000000
 0.2510 0.2400 0.2398 0.2395

c) Nearest Neighbor

Background & Method

This is a particular case of the K-Nearest Neighbor method, where the class is predicted to be the class of
the closest training sample, i.e. the algorithm just looks at one nearby neighbor. If the number of samples
is not large it makes a good sense to use, instead of the k-nearest neighbor, the single nearest neighbor.

Experiment & Analysis

Again, we employed the following parameter: Mean1=1. Mean2=-1. Standard deviation1= 2 .Standard
deviation2= 2 , and 1=nk .

Figure 10a N=1000 Figure 10b N=10000

Figure 10c N=100000 Figure 10d N=1000000

Table 6 showed the results of the performance of the Nearest Neighbor classifier in terms of the
probability error as function of the length of our data set.

Table 6. Comparison of probability of error using NN

P(e) N = 1000 N = 10000 N = 100000 N = 1000000
 0.4050 0.3572 0.3406 0.3397

d) Compare the three approaches.

To analyze the performance the three different methods given the same set of data, we generated 100000
sample points using following parameter: Mean1=1. Mean2=-1. Standard deviation1= 2 .Standard
deviation2= 2 , and 1=nk . Figure 10 showed a comparison of the estimated distribution function
between the Parzen window (h1=1), K-nearest Neighbor (k=224), and Nearest Neighbor methods.

Figure 11 Comparison between Parzon Window, KNN and NN methods

From Figure 10, we noted that the result of the NN is shown in the following figure, since using the same
number of data points than the other two methods the estimate has large peaks. The probability also
showed the same trend, i.e. P(e)_Parzen = 0.2419, P(e)_KNN = 0.2419, P(e)_NN = 0.4287.

Z:\course\ECE662\HW2\prob_1\paramet.m Tuesday, April 15, 2008 4:13 PM

% Hw 2 p1 Parametric Method

clear all
close all

% sample points
n1=150;
n2=150;
% % 1-dim
% mean_x1 = 2;
% var_x1 = 4;
% mean_x2 = 0;
% var_x2 = 1;
% x1 = mean_x1 + sqrt(var_x1)*randn(1,n1);
% x2 = mean_x2 + sqrt(var_x2)*randn(1,n2);
% 2-dim
Mean1 = [0 3]';
Mean2 = [-5 0]';
std1 = [0.5 0; 0 0.5];
std2 = [2 1; 1 1];
data_class1 = mvnrnd(Mean1,std1,n1);
data_class2 = mvnrnd(Mean2,std2,n2);
plot(data_class1(:,1),data_class1(:,2),'b*',...

data_class2(:,1),data_class2(:,2),'r*');
legend('Class 1 data','Class 2 data');
title('2D sample data');
x1=data_class1;
x2=data_class2;
mhu_1=(1/n1)*(sum(x1));
mhu_2=(1/n2)*(sum(x2));

bet_scatter= (mhu_1-mhu_2);

% S_B = eye(f,c);
S_W1 = size(x1,1)*cov(x1);
S_W2 = size(x2,1)*cov(x2);
S_W = S_W1+S_W2;
[f,c]=size(S_W);
S_W_I=eye(f,c);

w_opt=S_W\bet_scatter';
w_opt_I =S_W_I\bet_scatter';

% Projections
y1 = x1*w_opt;
y2 = x2*w_opt;
y1_I = x1*w_opt_I;
y2_I = x2*w_opt_I;

bin = 0.1;
x = -25:bin:25;
xa = 1:length(y1);
xb=1:length(y2);
figure,
plot(xa,y1,'b',xb,y2,'r');
legend('Projected Class 1','Projected Class 2');
title('Projected data with S_W');

-1-

Z:\course\ECE662\HW2\prob_1\paramet.m Tuesday, April 15, 2008 4:13 PM

figure,
plot(xa,y1_I,'b',xb,y2_I,'r');
legend('Projected Class 1','Projected Class 2');
title('Projected data with S_W as identity matrix');

-2-

Z:\course\ECE662\HW2\prob_2\ANN_1D\bp.m Tuesday, April 15, 2008 4:14 PM

% performs backpropagation algorithm
close all;
clear all;
%rand('state',100);
% the neurons have a sigmoid function activation
% data length
N1 = 2;
N2 = 3;
N3 = 2;
% length training set
% iter = epochs
iter = 20;
iter_test = 20;
Target = zeros(1,N3);

% initialize weights
W_hid_in = rand(1,N1);
W_hid_out = rand(1,N2);
error_epoch = zeros(1,iter);
error_epoch_test = zeros(1,iter_test);
Mean1 = -1;
Mean2 = 1;
std1 = sqrt(2);
std2 = sqrt(2);
data_class1 = Mean1 + std1*randn(1,N1);
data_class2 = Mean2 + std2*randn(1,N1);
for k=1:iter
if (mod(k,2)==0)

training_data = data_class1;
else

training_data = data_class2;
epoch=k,

end
for i=1:N1

sig_output(i) = training_data(i);
end
% training the neural network step
% outputs
for n=1:N3

in_last(n)=0;
for j=1:N2

input_hid(j)=0;
for i=1:N1

input_hid(j) = input_hid(j)+W_hid_in(i)*sig_output(i);
end

W_old_hidden(:,j) = W_hid_in';
sig_output_hid(j) = (1)/(1+exp(-input_hid(j)));
in_last(n) = sig_output_hid(j)*W_hid_out(j)+in_last(n);

end
out(n) = (1)/(1+exp(-in_last(n)));

W_old_output(:,n) = W_hid_out';

end

lear_rate = 0.25;

-1-

Z:\course\ECE662\HW2\prob_2\ANN_1D\bp.m Tuesday, April 15, 2008 4:14 PM

% backpropagation step

% calculate errors of output neurons
for i=1:N3

delta(i) = out(i)*(1-out(i))*(Target(i)-out(i));
end
% Change output layer weights
for i=1:N2

for j=1:N3
W_new_output(i,j) = W_old_output(i,j)+lear_rate*delta(j)*sig_output_hid(i);

end
end
% back-propagate
for i=1:N2

ssuumm=0;
for j=1:N3

ssuumm = delta(j)*W_new_output(i,j)+ssuumm;
end
delta_hid(i) = sig_output_hid(i)*(1-sig_output_hid(i))*ssuumm;

end

% change hidden layer weights
for i=1:N1

for j=1:N2
W_new_hidden(i,j) = W_old_hidden(i,j)+lear_rate*delta_hid(j)*training_data(i);

end
end

W_old_output = W_new_output;
W_old_hidden = W_new_hidden;

% forward pass with the new weights
for i=1:N1

sig_output(i) = training_data(i);
end
% outputs
for n=1:N3

in_last(n) = 0;
W_hid_out = W_new_output(:,n)';

for j=1:N2
input_hid(j) = 0;
W_hid_in = W_new_hidden(:,j)';

for i=1:N1
input_hid(j) = input_hid(j)+W_hid_in(i)*sig_output(i);

end
sig_output_hid(j) = (1)/(1+exp(-input_hid(j)));
in_last(n) = sig_output_hid(j)*W_hid_out(j)+in_last(n);

end
output(n,k) = (1)/(1+exp(-in_last(n)));
error(k) = abs(Target(n)-output(n,k));
end
error_epoch(k) = (error_epoch(k)+error(k))/k;
end
x=1:iter;
plot(x,error_epoch,'b'); hold on;

-2-

Z:\course\ECE662\HW2\prob_2\ANN_1D\bp.m Tuesday, April 15, 2008 4:14 PM

% hold on;
y=zeros(1,iter_test);

%% Testing...
for k=1:iter_test
data_class1 = Mean1 + std1*randn(1,N1);
data_class2 = Mean2 + std2*randn(1,N1);
% Generating the test data
p=randperm(2);
if (p(1)==1)
training_data = data_class1;
else
training_data = data_class1;
end
epoch=k,
for i=1:N1

sig_output(i) = training_data(i);
end
% outputs
for n=1:N3

in_last(n) = 0;
for j=1:N2

input_hid(j) = 0;
for i=1:N1

input_hid(j) = input_hid(j)+W_hid_in(i)*sig_output(i);
end

sig_output_hid(j) = (1)/(1+exp(-input_hid(j)));
in_last(n) = sig_output_hid(j)*W_hid_out(j)+in_last(n);

end
outpu_test(n,k) = (1)/(1+exp(-in_last(n)));
error_test(k) = abs(Target(n)-outpu_test(n,k));
end
error_epoch_test(k) = (error_epoch_test(k)+error_test(k))/k;
y(k)=(y(k)+1)/k
end
x=1:iter_test;
plot(x,error_epoch_test,'r'); hold off;
% W_hid_in
% W_hid_out

-3-

Z:\course\ECE662\HW2\prob_2\SVM_1D\svm.m Tuesday, April 15, 2008 4:14 PM

% clear; % clear variables from memory
% close all;

nsample = 300;

Mean1 = 1;
Mean2 = -1;
std1 = 2;
std2 = 2;
data_class1 = Mean1 + std1*randn(1,nsample/2);
data_class2 = Mean2 + std2*randn(1,nsample/2);
X(1:nsample/2) = data_class1;
X(nsample/2+1:nsample) = data_class2;
X = sort(X);
plot(data_class1,'ro');hold on;
plot(data_class2,'b+');
p = randperm(nsample);
Y(p(1:nsample/2)) = -1;
Y(p(nsample/2+1:nsample)) = 1;

C = [0.1, 1, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 100000];
Margin = []; % margin; initialized as null
nSV = []; % number of support vector;
nMis = []; % number of misclassification;
Err = []; % training errors;
% X,Y,
for n = 1 : max(size(C)),

H = zeros(nsample, nsample);
for i = 1 : nsample,

for j = 1 : nsample,
H(i,j) = X(i)*X(j)*Y(i)*Y(j);

end
end
H = H+1e-10*eye(size(H));
F = -ones(nsample,1);
A = Y;
b = zeros(size(Y));

UB = zeros(nsample,1);
LB = C(n)*ones(nsample,1);

% starting point of alpha
Alpha0 = zeros(nsample, 1);

% optimizing alpha with quadratic programming

[Alpha] = quadprog(H, F, [], [], A, b, LB, UB, Alpha0),

% [Alpha,FVAL] = quadprog(H, F, A, b),
% tolerance for support vector detection; we will ignore the alphas less than tol
tol = 0.0001;

% calculate weight
w = 0;
for i = 1 : nsample,

-1-

Z:\course\ECE662\HW2\prob_2\SVM_1D\svm.m Tuesday, April 15, 2008 4:14 PM

w = w + Alpha(i) * Y(i) * X(i);
end

% calculate bias
bias = 0;
b1 = 0;
b2 = 0;
for i = 1 : nsample,
if (Alpha(i) > tol & Alpha(i) < C(n) - tol),

b1 = b1 + X(i) * w - Y(i);
b2 = b2 - 1;

end
end

if b2 ~= 0,
bias = b1 / b2;

else % unlikely
b1 = 0;
for i = 1 : nsample,

if Alpha(i) < tol,
b1 = b1 + X(i) * w - Y(i);

b2 = b2 - 1;
end

end

if b2 ~= 0,
bias = b1 / b2;
else % even unlikelier
b1 = 0;

for i = 1 : nsample,
b1 = b1 + X(i) * w - Y(i);

b2 = b2 - 1;
end

if b2 ~= 0,
bias = b1 / b2;
end

end
end

% margin = 2 / ||w||
Margin = [Margin, 2 / abs(w)];
nSV = [nSV, size(find(Alpha > tol), 1)];

% calculate # of misclassification and training error
m = 0;
e = 0;
for i = 1 : nsample,
predict = w * X(i) + bias; % Y = w * X + b

if predict >= 0 & Y(i) < 0,
m = m + 1;

end
if predict < 0 & Y(i) >= 0,

m = m + 1;
end
if Alpha(i) > tol, % consider support vectors only; why?
e = e + 1 - predict * Y(i);

-2-

Z:\course\ECE662\HW2\prob_2\SVM_1D\svm.m Tuesday, April 15, 2008 4:14 PM

end
end
nMis = [nMis, m],
Err = [Err, e],

end

Z = zeros(size(C));
for i = 1 : size(C, 2)

Z(i) = i;
end

figure
plot(Z, Margin);
title('Margin');
xlabel('C(i)');

figure
plot(Z, Err);
title('Training Error');
xlabel('C(i)');

figure
plot(Z, nMis);
title('# of Misclassification');
xlabel('C(i)');

figure
plot(Z, nSV);
title('# of Support Vector');
xlabel('C(i)');

-3-

Z:\course\ECE662\HW2\prob_3\parzen\Parzen.m Tuesday, April 15, 2008 4:15 PM

clear all
close all

n = 100000;
train_data = n/2;
test_data = n/2;

% Data set 1: x1 with distribution N(a,b) (mean=a, var=b)
mean_x1 = 1;
var_x1 = 2;
x1 = mean_x1 + sqrt(var_x1)*randn(1,n);
x1_train = x1(1:train_data);
x1_test = x1(train_data+1:end);

% Data set 2: x2 with distribution N(a,b) (mean=a, var=b)
mean_x2 = -1;
var_x2 = 2;
x2 = mean_x2 + sqrt(var_x2)*randn(1,n);
x2_train = x2(1:train_data);
x2_test = x2(train_data+1:end);

% 1st estimation by Parzen window

d = 1; % dimention
x = -5:0.2:10;
L_x = length(x);
%setting h1
h1 = 5;
hn = h1/sqrt(train_data);
Vn = hn^d;

Q1 = zeros(1,train_data);
prob1_train = zeros(1,L_x);

Q2 = zeros(1,train_data);
prob2_train = zeros(1,L_x);

for i = 1:L_x
for j = 1:train_data

Q1(j) = 1/(sqrt(2*pi))*exp(-(x(i) - x1_train(j))^2/(2*hn^2));
Q2(j) = 1/(sqrt(2*pi))*exp(-(x(i) - x2_train(j))^2/(2*hn^2));
prob1_train(i) = prob1_train(i) + 1/train_data*1/Vn*Q1(j);
prob2_train(i) = prob2_train(i) + 1/train_data*1/Vn*Q2(j);

end
end

figure
plot(x,prob1_train,'r-', x,prob2_train,'b-');
legend('Class 1','Class 2');
title('Estimated Density Distribution');

% 2nd step classification and errors by Parzen window method
error1 = 0;
error2 = 0;

-1-

Z:\course\ECE662\HW2\prob_3\parzen\Parzen.m Tuesday, April 15, 2008 4:15 PM

for i = 1:test_data
parzen = find(abs(x-x1_test(i)) <= 0.1);

if (prob1_train(parzen) < prob2_train(parzen))
error1 = error1 + 1;

end
parzen2 = find(abs(x-x2_test(i)) <= 0.1);
if(prob2_train(parzen2) < prob1_train(parzen2))

error2 = error2 + 1;
end

end

error_total = error1 + error2
error_parzen_prob = error_total/(2*test_data)

-2-

Z:\course\ECE662\HW2\prob_3\KNN\kNN.m Tuesday, April 15, 2008 4:15 PM

% Nearest Neighbor
clear all
close all

% sample data
n = 1000000;
train_data = n/2;
test_data = n/2;

% Data set 1:
mean_x1 = 1;
var_x1 = 2;
x1 = mean_x1 + sqrt(var_x1)*randn(1,n);
x1_train = x1(1:train_data);
x1_test = x1(train_data+1:end);

% Data set 2:
mean_x2 = -1;
var_x2 = 2;
x2 = mean_x2 + sqrt(var_x2)*randn(1,n);
x2_train = x2(1:train_data);
x2_test = x2(train_data+1:end);

% function of kn (KNN)
kn = ceil(sqrt(train_data));
% function of kn (NN)
%kn = 1;

x = -5:0.2:10;
L_x = length(x);
p1_nn = zeros(1,L_x);
p2_nn = zeros(1,L_x);

for i = 1:L_x
index_sort1 = sort(abs(x1_train - x(i)));
V1 = 2 * index_sort1(kn);
index_sort2 = sort(abs(x2_train - x(i)));
V2 = 2 * index_sort2(kn);
if (V1 > 0)

p1_nn(i) = kn/train_data/V1;
end
if(V2 > 0)

p2_nn(i) = kn/train_data/V2;
end
if (p1_nn(i)>10)

p1_nn(i)=0;
end
if (p2_nn(i)>10)

p2_nn(i)=0;
end

end

figure
plot(x,p1_nn,'r-',x,p2_nn,'b-');
legend('Class 1','Class 2');

-1-

Z:\course\ECE662\HW2\prob_3\KNN\kNN.m Tuesday, April 15, 2008 4:15 PM

title('Estimated Density Distribution');

% Classification

error_nn_total = 0;
error1 = 0;
error2 = 0;

for i = 1:test_data
j1_nn = find(abs(x-x1_test(i)) <=0.1);

if (p1_nn(j1_nn) < p2_nn(j1_nn))
error1 = error1 +1;

end

j2_nn = find (abs(x-x2_test(i))<=0.1);

if(p2_nn(j2_nn) < p1_nn(j2_nn))
error2 = error2 +1;

end
end
error_nn_total = (error1 + error2)/2/test_data

-2-

Z:\course\ECE662\HW2\prob_3\NN\NN.m Tuesday, April 15, 2008 4:16 PM

% Nearest Neighbor
clear all
close all

% sample data
n = 100000;
train_data = n/2;
test_data = n/2;

% Data set 1:
mean_x1 = 1;
var_x1 = 2;
x1 = mean_x1 + sqrt(var_x1)*randn(1,n);
x1_train = x1(1:train_data);
x1_test = x1(train_data+1:end);

% Data set 2:
mean_x2 = -1;
var_x2 = 2;
x2 = mean_x2 + sqrt(var_x2)*randn(1,n);
x2_train = x2(1:train_data);
x2_test = x2(train_data+1:end);

% function of kn (KNN)
% kn = ceil(sqrt(train_data));
% function of kn (NN)
kn = 1;

x = -5:0.2:10;
L_x = length(x);
p1_nn = zeros(1,L_x);
p2_nn = zeros(1,L_x);

for i = 1:L_x
index_sort1 = sort(abs(x1_train - x(i)));
V1 = 2 * index_sort1(kn);
index_sort2 = sort(abs(x2_train - x(i)));
V2 = 2 * index_sort2(kn);
if (V1 > 0)

p1_nn(i) = kn/train_data/V1;
end
if(V2 > 0)

p2_nn(i) = kn/train_data/V2;
end
if (p1_nn(i)>10)

p1_nn(i)=0;
end
if (p2_nn(i)>10)

p2_nn(i)=0;
end

end

figure
plot(x,p1_nn,'r-',x,p2_nn,'b-')
legend('Class 1','Class 2');

-1-

Z:\course\ECE662\HW2\prob_3\NN\NN.m Tuesday, April 15, 2008 4:16 PM

title('Estimated Density Distribution');

% Classification

error_nn_total = 0;
error1 = 0;
error2 = 0;

for i = 1:test_data
j1_nn = find(abs(x-x1_test(i)) <=0.1);

if (p1_nn(j1_nn) < p2_nn(j1_nn))
error1 = error1 +1;

end

j2_nn = find (abs(x-x2_test(i))<=0.1);

if(p2_nn(j2_nn) < p1_nn(j2_nn))
error2 = error2 +1;

end
end
error_nn_total = (error1 + error2)/2/test_data

-2-

Z:\course\ECE662\HW2\prob_3\compare.m Tuesday, April 15, 2008 4:15 PM

clear all
close all
clc

load x1_train
load x1_test
load x2_train
load x2_test

n = 100000;
train_data = n/2;
test_data = n/2;

%---------- TRAIN ---------------%

% Parzen window
d = 1; % dimention
x = -5:0.2:10;
L_x = length(x);
%setting h1
h1 = 1;
hn = h1/sqrt(train_data);
Vn = hn^d;

Q1 = zeros(1,train_data);
prob1_train = zeros(1,L_x);

Q2 = zeros(1,train_data);
prob2_train = zeros(1,L_x);

for i = 1:L_x
for j = 1:train_data

Q1(j) = 1/(sqrt(2*pi))*exp(-(x(i) - x1_train(j))^2/(2*hn^2));
Q2(j) = 1/(sqrt(2*pi))*exp(-(x(i) - x2_train(j))^2/(2*hn^2));
prob1_train(i) = prob1_train(i) + 1/train_data*1/Vn*Q1(j);
prob2_train(i) = prob2_train(i) + 1/train_data*1/Vn*Q2(j);

end
end

% KNN
knn = ceil(sqrt(train_data));
p1_knn = zeros(1,L_x);
p2_knn = zeros(1,L_x);

for i = 1:L_x
index_sort1 = sort(abs(x1_train - x(i)));
V1 = 2 * index_sort1(knn);
index_sort2 = sort(abs(x2_train - x(i)));
V2 = 2 * index_sort2(knn);
if (V1 > 0)

p1_knn(i) = knn/train_data/V1;
end
if(V2 > 0)

p2_knn(i) = knn/train_data/V2;
end
if (p1_knn(i)>10)

-1-

Z:\course\ECE662\HW2\prob_3\compare.m Tuesday, April 15, 2008 4:15 PM

p1_knn(i)=0;
end
if (p2_knn(i)>10)

p2_knn(i)=0;
end

end

% NN
kn = 1;
p1_nn = zeros(1,L_x);
p2_nn = zeros(1,L_x);

for i = 1:L_x
index_sort1 = sort(abs(x1_train - x(i)));
V1 = 2 * index_sort1(kn);
index_sort2 = sort(abs(x2_train - x(i)));
V2 = 2 * index_sort2(kn);
if (V1 > 0)

p1_nn(i) = kn/train_data/V1;
end
if(V2 > 0)

p2_nn(i) = kn/train_data/V2;
end
if (p1_nn(i)>10)

p1_nn(i)=0;
end
if (p2_nn(i)>10)

p2_nn(i)=0;
end

end

figure
plot(x,prob1_train,'r-',x,prob2_train,'g-',x,p1_knn,'b-',x,p2_knn,'k-',x,p1_nn,'m-',x,p2_nn,
'c-','LineWidth',2);
legend('Class 1 Parzen','Class 2 Parzen','Class 1 KNN','Class 2 KNN','Class 1 NN','Class 2
NN');
title('Comparison of Estimated Density Distribution');

%----------- TEST ----------------%

%Parzen window method
error1 = 0;
error2 = 0;

for i = 1:test_data
parzen = find(abs(x-x1_test(i)) <= 0.1);

if (prob1_train(parzen) < prob2_train(parzen))
error1 = error1 + 1;

end
parzen2 = find(abs(x-x2_test(i)) <= 0.1);
if(prob2_train(parzen2) < prob1_train(parzen2))

error2 = error2 + 1;
end

end

error_total = error1 + error2

-2-

Z:\course\ECE662\HW2\prob_3\compare.m Tuesday, April 15, 2008 4:15 PM

error_parzen_prob = error_total/(2*test_data)

% KNN
error_knn_total = 0;
error1 = 0;
error2 = 0;

for i = 1:test_data
j1_knn = find(abs(x-x1_test(i)) <=0.1);

if (p1_knn(j1_knn) < p2_knn(j1_knn))
error1 = error1 +1;

end

j2_knn = find (abs(x-x2_test(i))<=0.1);

if(p2_knn(j2_knn) < p1_knn(j2_knn))
error2 = error2 +1;

end
end
error_knn_total = (error1 + error2)/2/test_data

% NN
error_nn_total = 0;
error1 = 0;
error2 = 0;

for i = 1:test_data
j1_nn = find(abs(x-x1_test(i)) <=0.1);

if (p1_nn(j1_nn) < p2_nn(j1_nn))
error1 = error1 +1;

end

j2_nn = find (abs(x-x2_test(i))<=0.1);

if(p2_nn(j2_nn) < p1_nn(j2_nn))
error2 = error2 +1;

end
end
error_nn_total = (error1 + error2)/2/test_data

-3-

