
Question 1 

In the Parametric Method section of the course, we learned how to draw a separation hyperplane 
between two classes by obtaining w0, the argmax of the cost function / . The 
solution was found to be , where m1 and m2 are the sample means of each class, 
respectively.  

Some students raised the question: can one simply use  instead (i.e. setting Sw as the 
identity matrix in the solution w0? Investigate this question by numerical experimentation. 

 

Background & Method 

Fisher's linear discriminant is a classification method that projects high-dimensional data onto a line 
xwy T=
 
and performs classification in this one-dimensional space. The goal is to find w such that the 

projection maximizes the distance between the means of the two classes while minimizing the variance 
within each class.  Thus, we can write the problem as 

  →  )( 21
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where  is  “between class scatter matrix” and ∑   
 is “within class scatter matrix”. 

In this problem, we want to compare the projection data using Σ Σ  (Σ  is the covariance of class 
i) to . 

 

Experiment & Analysis 

We considered two dimensional datasets with two classes.  We constructed our experiments based on two 
different scenarios, where Case 1 contains non-separable data and Case 2 contains separable data.  

Case 1:  

mean 1 0
0 , mean 2 0

0 , standard deviation 1  1 0
0 1 , standard deviation 2  1 0

0 1  

150 samples were generated for each class. 



 
Figure 1a 

 
Figure 1b 

 
Figure 1c 



Figure 1a shows the 2D non-separable data, Figure 1b is the optimal projection given   and 
Figure 1c is the results obtained by considering  . We inspected from the results that by 
setting , the optimal solution wopt is normalized, whereas when  , the range of wopt  
became “arbitrary”.  However in the Fisher’s Linear Discriminating analysis, we are only interested in 
direction of projection, the resulting range of the project is not as important. In the following case we see 
bigger difference between the two situations both in the between class separation and in the within class 
separation. 

 

Case 2: 

mean 1 0
3 , mean 2 5

0 , standard deviation 1  0.5 0
0 0.5 , standard deviation 2  2 1

1 1  

150 samples were generated for each class. 



 
Figure 2a 

 
Figure 2b 

 
Figure 2c 



Figure 2a shows the 2D separable data, Figure 2b is the optimal projection given  Σ Σ  and 
Figure 2c is the results obtained by considering . In this second case, when we set ISw =  the 

algorithm only optimizes the term wSw B
T , and thus the dimension with larger |m_1-m_2| will be chosen 

(larger between classes). Additionally, in this case the algorithm does not take into consideration the 
variance within class scatters; this is why we see clearly that in this situation the within projected classes 
plot is less compacted in comparison with the situation where we set Σ Σ .   Hence the results 
using the optimal Fisher’s solution show that the classes are better separated. 

 

  



Question 2 

Obtain a set of training data. Divide the training data into two sets. Use the first set as training data and 
the second set as test data.  

a) Experiment with designing a classifier using the neural network approach.  

b) Experiment with designing a classifier using the support vector machine approach.  

c) Compare the two approaches.  

 

a)  Neural Network  

Background & Method 

In this section we implemented an artificial multilayer neural network with one hidden network, in 
particular, the Back Propagation network, which is widely used and on which many others are based [1].  
An illustration is shown in Figure 3. 

 

Figure 3  An example of ANN 

The Back Propagation algorithm is based on the gradient descent error with the following steps: 

• Select a network architecture 

• Initialize the weights to small random values 

• Compute the corresponding outputs according to the training set 



• For each epoch and each training example  

o Input the training example to the network and compute the network outputs 

o For each output unit k, we compute its error 
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o For each hidden unit h, we compute its error 
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Through each iteration, the algorithm minimizes the error between the targeted output and the real output. 
We initialized the weights near to zero for convergence purposes, and set the algorithm to terminate when 
the change in the criterion function J(w) (a function of the error) is smaller than some preset value.  We 
employed the sigmoid activation function as our output function .    

For this experiment we have taken two different Gaussian classes or patterns, and we have divided them 
using one part as a training set and the other one as a test set. The goal is to verify that error training 
decreases as a function of epochs and the error in the test data decreases too, but is higher than the 
previous one. We have experimented with several network configurations (different number of nodes). 

 

Experiment & Analysis 

Case 1:  

Mean1=-1. Mean2=1. Standard deviation1= 2 .Standard deviation2= 2 . 200 training samples and 200 
testing samples. 



 

Figure 4  Training error as a function of epochs 

Table 1  Sample training error at different epochs 

Number of nodes  2 epochs  8 epochs  16 epochs  20 epochs 
No. 1  0.3481  0.0817  0.0368  0.0278 
No. 2  0.2500  0.0625  0.0313  0.0250 
No. 3  0.5000  0.1250  0.0625  0.0500 
No. 4  0.3037  0.0714  0.0326  0.0249 

 

Case 2:  

Mean1=-3. Mean2=3. Standard deviation1= 3 .Standard deviation2= 3 . 200 training samples and 200 
testing samples. 



 

Figure 5  Training error as a function of epochs 

Table 2  Sample training error at different epochs 

Number of nodes  2 epochs  8 epochs  16 epochs  20 epochs 
No. 1  0.2506  0.0626  0.0313  0.0251 
No. 2  0.2500  0.0625  0.0313  0.0250 
No. 3  0.2556  0.0635  0.0316  0.0252 
No. 4  0.2689  0.0663  0.0326  0.0258 

 

It is noted that the correct way to train the network is to apply the training samples of the first class first 
and change the weights in the network ONCE. Next to apply the training samples of the second class. 
Once we have all the classes trained once, we return to the first one again and repeat the process until the 
stop criterion is achieved.  Figure 4 and 5 showed plots f training error as functions of epochs, while 
Table 1 and 2 gave numeric values at sample epochs.  The different cases represent different network 
configurations. We define N1= number of nodes in the first layer, N2 = number of nodes in the hidden 
layer, N3 = number of nodes in the last layer. As stated in the experiments, in all the simulations we have 
taken half of samples as training samples and the other half for testing purposes.  So we see that for small 
number of epochs the error training is small when use more nodes, regardless at which layer they are. 
This is due to the larger number of weights (order of freedom) that it used.  

 

 

 

 



b)  Support Vector Machine  

Background & Method 

Support Vector Machine (SVM) is a supervised learning method commonly used in pattern classification.  
Viewing the input data as two sets of vectors in an n-dimensional space, an SVM will construct a 
separating hyperplane in that space, one which maximizes the "margin" between the two data sets. To 
calculate the margin, we construct two parallel hyperplanes, one on each side of the separating one, which 
are "pushed up against" the two data sets. Intuitively, a good separation is achieved by the hyperplane that 
has the largest distance to the neighboring data points of both classes.  

Here, we aimed to learn the mapping: YX a , where Xx∈ is a feature (data point) and Yy∈ is a 
class label. The goal is to find a function which minimizes an objective such as: Training Error + 
Complexity Term. For this experiment we chose the following formulation: 
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The cost function is minimized via MATLAB function quadprog, which solves quadratic programming 
problems. 

We define: ∑=
i

iii xyw α , and IIII wxyb −−= )1( ε  where }{max iiaI α= . 

Note that all data points having iα >0 will be the support vectors. Then the classification rule is defined as:  

)(),,( bxwsignbwxf −⋅=  

 

Experiment & Analysis 

Similar to previous experiment, we generated a pseudo-random sample points, which generate normally 
distributed random numbers N(µ,σ) and separated into two different labeled classes. As in the neural 
network classifier we show the performance of this classifier by showing its error training and error test. 
In this case we have carried out two experiments: one set with data points more compacted and the other 
with a more “relaxed” location, and we change different simulation parameter to examine the behavior of 
our classifier. 

Case 1: Mean1=1. Mean2=-1. Standard deviation1= 2 .Standard deviation2= 2 . Using 500 samples 
to train the classifier, and 500 samples to test it. 



Figure 6a  Sample data Figure 6b  Classification error 

Figure 6c  # of misclassification Figure 6d  # of support vector 
 

Case 2: Mean1=3. Mean2=-3. Standard deviation1= 3 .Standard deviation2= 3 . Using 500 samples of 
each class to train the classifier, and 500 samples to test it. 



Figure 7a  Sample data Figure 7b  Classification error 

Figure 7c  # of misclassification Figure 7d  # of support vector 
 

From the results in both cases we can conclude that, for our data points, the parameter C may have the 
optimal value as it gets larger, so when working with Gaussian data we may not need to know a priori the 
problem under consideration since in both cases the trend as far as C is concerned is the same. 
Surprisingly, the results in terms of number of misclassification for small C values are quite unexpected. 
In the first case, where the data is more compacted, we have less number of misclassified points in the 
second case, and intuitively we would have expected different results (other way around).   Moreover, 
when the number of training samples was examined we observed that the resulting optimization problems 
are dependent upon the number of training examples. As such, when this data is large other methods for 
speeding up the algorithm should be addressed. The results in terms of the error are shown in the 
following section along with the neural network classifier error. 

 

 

 

 

 

 

 

 



c) Comparison between Neural Network classifier and Support Vector Machine classifier 

In this section we briefly discuss the performance of both the neural network classifier and the SVM 
classifier in terms of the test error performance. Note though, that there is no perfect comparison between 
these methods, here we have focused on the error performance for different situations. 

Table 3.  Performance analysis of Neural Network and Support Vector Machine 

P(e)  Neural Network  SVM 

Case 1  0.6060 

2 epochs 

0.0855 

8 epochs 

0.0319 

To inf. 

29.7119 

C=0.1 

0.276 

C=10 

0 

C= inf. 

Case 2  0.5763 

2 epochs 

0.0625 

8 epochs 

0.0253 

To inf. 

43.9958 

C=0.1 

35.7721 

C=10 

35.7721 

C=inf. 

 

For our set-up we obtained the results shown above, where the SVM classifier performed better in one 
case since it achieves smaller error values for some C’s than the convergence error (best case) of the 
neural network classifier. However, in the other case, the NN performs much better.  In both cases, NN is 
more constant in terms of error performance. 

However, in terms of computational time, the neural network classifier performed much faster, and this is 
something to take into account for large data sets. 

 

  



Question 3 

Using the same data as for question 2 (perhaps projected to one or two dimensions for better 
visualization),  

a) Design a classifier using the Parzen window technique.  

b) Design a classifier using the K-nearest neighbor technique  

c) Design a classifier using the nearest neighbor technique.  

d) Compare the three approaches.  

 

a) Parzen Window 

Background & Method 

Parzen window approach consists of estimating densities by temporarily assuming that the region nR  is a 

d-dimensional hypercube. If nh is the length of an edge of that hypercube, then its volume is given by
d
nn hV = . 

In the simplest case, if the window function is a unit function. Then, the estimate of the density at x is 
given as: 
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)(xpn expression suggests a general approach to estimating density functions. For Parzen window 

method, the choice of the hypercube volume has an important effect on )(xpn . If nV  is too large, the 

estimate will suffer from too little resolution; if nV is too small, the estimate will suffer from too much 

statistical variability. With a limited number of samples, the best we can do is to seek some acceptable 
compromise. However, with an unlimited number of samples, it is possible to let nV slowly approach zero 

as n increases and have )(xpn  converge to the unknown density ).(xp  

Due to the Gaussian nature of our test and training data, the Parzen window is designed using the 
following function: 
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Experiment & Analysis 

Similar to Question 2, two classes of data were generated, half of which was used as training data and the 
other half is used as test data. These data were generated using Gaussian distributed random number 
generator in MATLAB.  Note that for an easy visualization of the results we opted for the 1-dimensional 
case. To see the performance of our classifier we have carried out several simulations using different 
lengths of data samples and different hypercube sizes.  We used the following statistical parameters to 
generate our sample points both training and test. Mean1=1. Mean2=-1. Standard deviation1= 

2 .Standard deviation2= 2 . 

We first estimate the density function given the training points.  Three sample sizes and hypercube sizes 
were used.  N = sample size (e.g. 1000, 10000, 100000) and h1 = hypercube size (e.g. 0.1, 1, 5). 



Figure 8a  N=1000, h1=0.1 Figure 8b  N=1000, h1=1 Figure 8c  N=1000, h1=5 

Figure 8d  N=10000, h1=0.1 Figure 8e  N=10000, h1=1 Figure 8f  N=10000, h1=5 

Figure 8g  N=100000, h1=0.1 Figure 8h  N=100000, h1=1 Figure 8i  N=100000, h1=5 
 

It can be seen from the above figures that the results depend on both N and h1. As N increases the 
estimate matches better with the true density function, and as h1 decreases the estimated density function 
becomes thinner.  Therefore, once we have tested several estimates of density functions using the training 
data we can classify the data test by Parzen window method. To do so, we first need to estimate the a 
posteriori probability of the data test given the training set, i.e., )|( xwP i .  Thus, using the total joint 
probability theorem we can denote:  
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Where ),( in wxp is the estimate for the joint probability ),( xwP i , that can be thought as if we place a 

cell of volume nV around the training set and capture k samples, ik of which turn out to be labeled .iw
Roughly speaking the estimate of the posteriori probability that iw is the state of nature is merely the 
fraction of the samples within the cell that are labeled .iw Therefore, to get a minimum error expression 
we select the category most frequently represented within the cell. Note this approach is highly dependent 
on the nV .  In Table 4, we compared the error probability using the Parzen Window method for different 
sample size and hypercube size. 

 



 

Table  4  Comparison of probability of error using Parzen Window  

P(e)  N = 1000  N = 10000  N = 100000 
h1 = 0.1  0.2800  0.2812  0.2539 
h1 = 1  0.2350  0.2473  0.2386 
h1 = 5  0.2690  0.2426  0.2362 

 

 

b) K-nearest Neighbor 

Background & Method 

The idea of the K-Nearest Neighbor technique consist of estimating p(x) from a set of training samples 
where a cell is centered around x and it grows until captures nk samples, where nk is function of n 

(generally trainingnkn _= is good enough, n_training=n/2). Obviously the key point is to set nk to go 
to infinity as n goes to infinity as well, assuring that simple nkn / is a good estimate of the probability that 
any given point falls in the cell of volume nV . 

Experiment & Analysis 

In order to keep consistency in data analysis, we considered 1-dimensional case and particularly the same 
sample data as we used in Parzen window method. Therefore, the dataset had the following parameters:  
Mean1=1, Mean2=-1, Standard deviation1= 2 , Standard deviation2= 2 , and n_training=nk , e.g. 
n_training = 1000, 10000, 100000, 1000000. 



Figure 9a  N=1000 Figure 9b  N=10000 

Figure 9c  N=100000 Figure 9d  N=1000000 
 

We classify the test data according to the following method: 

• We estimate the probability )|( iwxP , i=1 and 2, as 
V

nkwxp i
in

/)|( =  

• We compare )|( 1wxP  and )|( 2wxP to choose the larger one as the class. We ignore prior 
probabilities since we assume them equal. 

Table 5 showed the results of the performance of the K-Nearest Neighbor classifier in terms of P(e) as 
function of the length of our data set. 

Table  5.  Comparison of probability of error using kNN  

P(e)  N = 1000  N = 10000  N = 100000  N = 1000000 
  0.2510  0.2400  0.2398  0.2395 

 

c) Nearest Neighbor 

Background & Method 

This is a particular case of the K-Nearest Neighbor method, where the class is predicted to be the class of 
the closest training sample, i.e. the algorithm just looks at one nearby neighbor. If the number of samples 
is not large it makes a good sense to use, instead of the k-nearest neighbor, the single nearest neighbor. 

 



Experiment & Analysis 

Again, we employed the following parameter: Mean1=1. Mean2=-1. Standard deviation1= 2 .Standard 
deviation2= 2 , and 1=nk . 

Figure 10a  N=1000 Figure 10b  N=10000 

Figure 10c  N=100000 Figure 10d  N=1000000 
 

Table 6 showed the results of the performance of the Nearest Neighbor classifier in terms of the 
probability error as function of the length of our data set. 

Table  6.  Comparison of probability of error using NN  

P(e)  N = 1000  N = 10000  N = 100000  N = 1000000 
  0.4050  0.3572  0.3406  0.3397 

 

d) Compare the three approaches.  

To analyze the performance the three different methods given the same set of data, we generated 100000 
sample points using following parameter: Mean1=1. Mean2=-1. Standard deviation1= 2 .Standard 
deviation2= 2 , and 1=nk .  Figure 10 showed a comparison of the estimated distribution function 
between the Parzen window (h1=1), K-nearest Neighbor (k=224), and Nearest Neighbor methods. 



 

Figure 11  Comparison between Parzon Window, KNN and NN methods 

From Figure 10, we noted that the result of the NN is shown in the following figure, since using the same 
number of data points than the other two methods the estimate has large peaks.  The probability also 
showed the same trend, i.e. P(e)_Parzen = 0.2419, P(e)_KNN = 0.2419, P(e)_NN = 0.4287. 
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% Hw 2 p1 Parametric Method

clear all
close all

% sample points
n1=150;
n2=150;
% % 1-dim
% mean_x1 = 2;
% var_x1 = 4;
% mean_x2 = 0;
% var_x2 = 1;
% x1 = mean_x1 + sqrt(var_x1)*randn(1,n1);
% x2 = mean_x2 + sqrt(var_x2)*randn(1,n2);
% 2-dim
Mean1 = [ 0 3]';
Mean2 = [ -5 0]';
std1 = [0.5 0; 0 0.5];
std2 = [2 1; 1 1];
data_class1 = mvnrnd(Mean1,std1,n1);
data_class2 = mvnrnd(Mean2,std2,n2);
plot(data_class1(:,1),data_class1(:,2),'b*',...

data_class2(:,1),data_class2(:,2),'r*');
legend('Class 1 data','Class 2 data');
title('2D sample data');
x1=data_class1;
x2=data_class2;
mhu_1=(1/n1)*(sum(x1));
mhu_2=(1/n2)*(sum(x2));

bet_scatter= (mhu_1-mhu_2);

% S_B = eye(f,c);
S_W1 = size(x1,1)*cov(x1);
S_W2 = size(x2,1)*cov(x2);
S_W = S_W1+S_W2;
[f,c]=size(S_W);
S_W_I=eye(f,c);

w_opt=S_W\bet_scatter';
w_opt_I =S_W_I\bet_scatter';

% Projections
y1 = x1*w_opt;
y2 = x2*w_opt;
y1_I = x1*w_opt_I;
y2_I = x2*w_opt_I;

bin = 0.1;
x = -25:bin:25;
xa = 1:length(y1);
xb=1:length(y2);
figure,
plot(xa,y1,'b',xb,y2,'r');
legend('Projected Class 1','Projected Class 2');
title('Projected data with S_W');
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figure,
plot(xa,y1_I,'b',xb,y2_I,'r');
legend('Projected Class 1','Projected Class 2');
title('Projected data with S_W as identity matrix');

-2-
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% performs backpropagation algorithm
close all;
clear all;
%rand('state',100);
% the neurons have a sigmoid function activation 
% data length
N1 = 2;
N2 = 3;
N3 = 2;
% length training set
% iter = epochs
iter = 20;
iter_test = 20;
Target = zeros(1,N3);

% initialize weights
W_hid_in = rand(1,N1);
W_hid_out = rand(1,N2);
error_epoch = zeros(1,iter);
error_epoch_test = zeros(1,iter_test);
Mean1 = -1;
Mean2 = 1;
std1 = sqrt(2);
std2 = sqrt(2);
data_class1 = Mean1 + std1*randn(1,N1);
data_class2 = Mean2 + std2*randn(1,N1);
for k=1:iter
if (mod(k,2)==0)

training_data = data_class1;
else

training_data = data_class2;
epoch=k,

end
for i=1:N1

sig_output(i) = training_data(i);
end
% training the neural network step
% outputs
for n=1:N3

in_last(n)=0;
for j=1:N2

input_hid(j)=0;
for i=1:N1

input_hid(j) = input_hid(j)+W_hid_in(i)*sig_output(i);
end

W_old_hidden(:,j) = W_hid_in';
sig_output_hid(j) = (1)/(1+exp(-input_hid(j)));
in_last(n) = sig_output_hid(j)*W_hid_out(j)+in_last(n);

end
out(n) = (1)/(1+exp(-in_last(n)));

W_old_output(:,n) = W_hid_out';

end

lear_rate = 0.25;

-1-
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% backpropagation step

% calculate errors of output neurons
for i=1:N3

delta(i) = out(i)*(1-out(i))*(Target(i)-out(i));
end
% Change output layer weights
for i=1:N2

for j=1:N3
W_new_output(i,j) = W_old_output(i,j)+lear_rate*delta(j)*sig_output_hid(i);

end
end
% back-propagate
for i=1:N2

ssuumm=0;
for j=1:N3

ssuumm = delta(j)*W_new_output(i,j)+ssuumm;
end
delta_hid(i) = sig_output_hid(i)*(1-sig_output_hid(i))*ssuumm;

end

% change hidden layer weights
for i=1:N1

for j=1:N2
W_new_hidden(i,j) = W_old_hidden(i,j)+lear_rate*delta_hid(j)*training_data(i);

end
end

W_old_output = W_new_output;
W_old_hidden = W_new_hidden;

% forward pass with the new weights
for i=1:N1

sig_output(i) = training_data(i);
end
% outputs
for n=1:N3

in_last(n) = 0;
W_hid_out = W_new_output(:,n)';

for j=1:N2
input_hid(j) = 0;
W_hid_in = W_new_hidden(:,j)';

for i=1:N1
input_hid(j) = input_hid(j)+W_hid_in(i)*sig_output(i);

end
sig_output_hid(j) = (1)/(1+exp(-input_hid(j)));
in_last(n) = sig_output_hid(j)*W_hid_out(j)+in_last(n);

end
output(n,k) = (1)/(1+exp(-in_last(n)));
error(k) = abs(Target(n)-output(n,k));
end
error_epoch(k) = (error_epoch(k)+error(k))/k;
end
x=1:iter;
plot(x,error_epoch,'b'); hold on;
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% hold on;
y=zeros(1,iter_test);

%% Testing...
for k=1:iter_test
data_class1 = Mean1 + std1*randn(1,N1);
data_class2 = Mean2 + std2*randn(1,N1);
% Generating the test data
p=randperm(2);
if (p(1)==1)
training_data = data_class1;
else
training_data = data_class1;
end
epoch=k,
for i=1:N1

sig_output(i) = training_data(i);
end
% outputs
for n=1:N3

in_last(n) = 0;
for j=1:N2

input_hid(j) = 0;
for i=1:N1

input_hid(j) = input_hid(j)+W_hid_in(i)*sig_output(i);
end

sig_output_hid(j) = (1)/(1+exp(-input_hid(j)));
in_last(n) = sig_output_hid(j)*W_hid_out(j)+in_last(n);

end
outpu_test(n,k) = (1)/(1+exp(-in_last(n)));
error_test(k) = abs(Target(n)-outpu_test(n,k));
end
error_epoch_test(k) = (error_epoch_test(k)+error_test(k))/k;
y(k)=(y(k)+1)/k
end
x=1:iter_test;
plot(x,error_epoch_test,'r'); hold off;
% W_hid_in
% W_hid_out
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% clear;    % clear variables from memory
% close all;

nsample = 300;

Mean1 = 1;
Mean2 = -1;
std1 = 2;
std2 = 2;
data_class1 = Mean1 + std1*randn(1,nsample/2);
data_class2 = Mean2 + std2*randn(1,nsample/2);
X(1:nsample/2) = data_class1;
X(nsample/2+1:nsample) = data_class2;
X = sort(X);
plot(data_class1,'ro');hold on;
plot(data_class2,'b+');
p = randperm(nsample);
Y(p(1:nsample/2)) = -1;
Y(p(nsample/2+1:nsample)) = 1;

C = [0.1, 1, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 100000];
Margin = []; % margin; initialized as null
nSV = []; % number of support vector;
nMis = []; % number of misclassification;
Err = []; % training errors;
% X,Y,
for n = 1 : max(size(C)),

H = zeros(nsample, nsample);
for i = 1 : nsample,

for j = 1 : nsample,
H(i,j) = X(i)*X(j)*Y(i)*Y(j);

end
end
H = H+1e-10*eye(size(H));
F = -ones(nsample,1);
A = Y;
b = zeros(size(Y));

UB = zeros(nsample,1);
LB = C(n)*ones(nsample,1);

% starting point of alpha
Alpha0 = zeros(nsample, 1);

% optimizing alpha with quadratic programming

[Alpha] = quadprog(H, F, [], [], A, b, LB, UB, Alpha0),

%    [Alpha,FVAL] = quadprog(H, F, A, b),
% tolerance for support vector detection; we will ignore the alphas less than tol
tol = 0.0001;

% calculate weight
w = 0;
for i = 1 : nsample,
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w = w + Alpha(i) * Y(i) * X(i);
end

% calculate bias
bias = 0;
b1 = 0;
b2 = 0;
for i = 1 : nsample,
if (Alpha(i) > tol & Alpha(i) < C(n) - tol),

b1 = b1 + X(i) * w - Y(i);
b2 = b2 - 1;

end
end

if b2 ~= 0,
bias = b1 / b2;

else % unlikely
b1 = 0;
for i = 1 : nsample,

if Alpha(i) < tol,
b1 = b1 + X(i) * w - Y(i);

b2 = b2 - 1;
end

end

if b2 ~= 0,
bias = b1 / b2;
else % even unlikelier
b1 = 0;

for i = 1 : nsample,
b1 = b1 + X(i) * w - Y(i);

b2 = b2 - 1;
end

if b2 ~= 0,
bias = b1 / b2;
end

end
end

% margin = 2 / ||w||
Margin = [Margin, 2 / abs(w)];
nSV = [nSV, size(find(Alpha > tol), 1)];

% calculate # of misclassification and training error
m = 0;
e = 0;
for i = 1 : nsample,
predict = w * X(i) + bias; % Y = w * X + b

if predict >= 0 & Y(i) < 0,
m = m + 1;

end
if predict < 0 & Y(i) >= 0,

m = m + 1;
end
if Alpha(i) > tol, % consider support vectors only; why?
e = e + 1 - predict * Y(i);

-2-



Z:\course\ECE662\HW2\prob_2\SVM_1D\svm.m Tuesday, April 15, 2008 4:14 PM

end
end
nMis = [nMis, m],
Err = [Err, e],

end

Z = zeros(size(C));
for i = 1 : size(C, 2)

Z(i) = i;
end

figure
plot(Z, Margin);
title('Margin');
xlabel('C(i)');

figure
plot(Z, Err);
title('Training Error');
xlabel('C(i)');

figure
plot(Z, nMis);
title('# of Misclassification');
xlabel('C(i)');

figure
plot(Z, nSV);
title('# of Support Vector');
xlabel('C(i)');
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clear all
close all

n = 100000;
train_data = n/2;
test_data = n/2;

% Data set 1: x1 with distribution N(a,b) (mean=a, var=b)
mean_x1 = 1;
var_x1 = 2;
x1 = mean_x1 + sqrt(var_x1)*randn(1,n);
x1_train = x1(1:train_data);
x1_test = x1(train_data+1:end);

% Data set 2: x2 with distribution N(a,b) (mean=a, var=b)
mean_x2 = -1;
var_x2 = 2;
x2 = mean_x2 + sqrt(var_x2)*randn(1,n);
x2_train = x2(1:train_data);
x2_test = x2(train_data+1:end);

% 1st estimation by Parzen window

d = 1; % dimention
x = -5:0.2:10;
L_x = length(x);
%setting h1
h1 = 5;
hn = h1/sqrt(train_data);
Vn = hn^d;

Q1 = zeros(1,train_data);
prob1_train = zeros(1,L_x);

Q2 = zeros(1,train_data);
prob2_train = zeros(1,L_x);

for i = 1:L_x
for j = 1:train_data

Q1(j) = 1/(sqrt(2*pi))*exp(-(x(i) - x1_train(j))^2/(2*hn^2));
Q2(j) = 1/(sqrt(2*pi))*exp(-(x(i) - x2_train(j))^2/(2*hn^2));
prob1_train(i) = prob1_train(i) + 1/train_data*1/Vn*Q1(j);
prob2_train(i) = prob2_train(i) + 1/train_data*1/Vn*Q2(j);

end
end

figure
plot(x,prob1_train,'r-', x,prob2_train,'b-');
legend('Class 1','Class 2');
title('Estimated Density Distribution');

% 2nd step classification and errors by Parzen window method
error1 = 0;
error2 = 0;
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for i = 1:test_data
parzen = find(abs(x-x1_test(i)) <= 0.1);

if (prob1_train(parzen) < prob2_train(parzen))
error1 = error1 + 1;

end
parzen2 = find(abs(x-x2_test(i)) <= 0.1);
if(prob2_train(parzen2) < prob1_train(parzen2))

error2 = error2 + 1;
end

end

error_total = error1 + error2
error_parzen_prob = error_total/(2*test_data)
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% Nearest Neighbor
clear all
close all

% sample data
n = 1000000;
train_data = n/2;
test_data = n/2;

% Data set 1:
mean_x1 = 1;
var_x1 = 2;
x1 = mean_x1 + sqrt(var_x1)*randn(1,n);
x1_train = x1(1:train_data);
x1_test = x1(train_data+1:end);

% Data set 2:
mean_x2 = -1;
var_x2 = 2;
x2 = mean_x2 + sqrt(var_x2)*randn(1,n);
x2_train = x2(1:train_data);
x2_test = x2(train_data+1:end);

% function of kn (KNN)
kn = ceil(sqrt(train_data));
% function of kn (NN)
%kn = 1;

x = -5:0.2:10;
L_x = length(x);
p1_nn = zeros(1,L_x);
p2_nn = zeros(1,L_x);

for i = 1:L_x
index_sort1 = sort(abs(x1_train - x(i)));
V1 = 2 * index_sort1(kn);
index_sort2 = sort(abs(x2_train - x(i)));
V2 = 2 * index_sort2(kn);
if (V1 > 0)

p1_nn(i) = kn/train_data/V1;
end
if(V2 > 0)

p2_nn(i) = kn/train_data/V2;
end
if (p1_nn(i)>10)

p1_nn(i)=0;
end
if (p2_nn(i)>10)

p2_nn(i)=0;
end

end

figure
plot(x,p1_nn,'r-',x,p2_nn,'b-');
legend('Class 1','Class 2');
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title('Estimated Density Distribution');

% Classification

error_nn_total = 0;
error1 = 0;
error2 = 0;

for i = 1:test_data
j1_nn = find(abs(x-x1_test(i)) <=0.1);

if (p1_nn(j1_nn) < p2_nn(j1_nn))
error1 = error1 +1;

end

j2_nn = find (abs(x-x2_test(i))<=0.1);

if(p2_nn(j2_nn) < p1_nn(j2_nn))
error2 = error2 +1;

end
end
error_nn_total = (error1 + error2)/2/test_data
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% Nearest Neighbor
clear all
close all

% sample data
n = 100000;
train_data = n/2;
test_data = n/2;

% Data set 1:
mean_x1 = 1;
var_x1 = 2;
x1 = mean_x1 + sqrt(var_x1)*randn(1,n);
x1_train = x1(1:train_data);
x1_test = x1(train_data+1:end);

% Data set 2:
mean_x2 = -1;
var_x2 = 2;
x2 = mean_x2 + sqrt(var_x2)*randn(1,n);
x2_train = x2(1:train_data);
x2_test = x2(train_data+1:end);

% function of kn (KNN)
% kn = ceil(sqrt(train_data));
% function of kn (NN)
kn = 1;

x = -5:0.2:10;
L_x = length(x);
p1_nn = zeros(1,L_x);
p2_nn = zeros(1,L_x);

for i = 1:L_x
index_sort1 = sort(abs(x1_train - x(i)));
V1 = 2 * index_sort1(kn);
index_sort2 = sort(abs(x2_train - x(i)));
V2 = 2 * index_sort2(kn);
if (V1 > 0)

p1_nn(i) = kn/train_data/V1;
end
if(V2 > 0)

p2_nn(i) = kn/train_data/V2;
end
if (p1_nn(i)>10)

p1_nn(i)=0;
end
if (p2_nn(i)>10)

p2_nn(i)=0;
end

end

figure
plot(x,p1_nn,'r-',x,p2_nn,'b-')
legend('Class 1','Class 2');
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title('Estimated Density Distribution');

% Classification

error_nn_total = 0;
error1 = 0;
error2 = 0;

for i = 1:test_data
j1_nn = find(abs(x-x1_test(i)) <=0.1);

if (p1_nn(j1_nn) < p2_nn(j1_nn))
error1 = error1 +1;

end

j2_nn = find (abs(x-x2_test(i))<=0.1);

if(p2_nn(j2_nn) < p1_nn(j2_nn))
error2 = error2 +1;

end
end
error_nn_total = (error1 + error2)/2/test_data
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clear all
close all
clc

load x1_train
load x1_test
load x2_train
load x2_test

n = 100000;
train_data = n/2;
test_data = n/2;

%---------- TRAIN ---------------%

% Parzen window
d = 1; % dimention
x = -5:0.2:10;
L_x = length(x);
%setting h1
h1 = 1;
hn = h1/sqrt(train_data);
Vn = hn^d;

Q1 = zeros(1,train_data);
prob1_train = zeros(1,L_x);

Q2 = zeros(1,train_data);
prob2_train = zeros(1,L_x);

for i = 1:L_x
for j = 1:train_data

Q1(j) = 1/(sqrt(2*pi))*exp(-(x(i) - x1_train(j))^2/(2*hn^2));
Q2(j) = 1/(sqrt(2*pi))*exp(-(x(i) - x2_train(j))^2/(2*hn^2));
prob1_train(i) = prob1_train(i) + 1/train_data*1/Vn*Q1(j);
prob2_train(i) = prob2_train(i) + 1/train_data*1/Vn*Q2(j);

end
end

% KNN
knn = ceil(sqrt(train_data));
p1_knn = zeros(1,L_x);
p2_knn = zeros(1,L_x);

for i = 1:L_x
index_sort1 = sort(abs(x1_train - x(i)));
V1 = 2 * index_sort1(knn);
index_sort2 = sort(abs(x2_train - x(i)));
V2 = 2 * index_sort2(knn);
if (V1 > 0)

p1_knn(i) = knn/train_data/V1;
end
if(V2 > 0)

p2_knn(i) = knn/train_data/V2;
end
if (p1_knn(i)>10)
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p1_knn(i)=0;
end
if (p2_knn(i)>10)

p2_knn(i)=0;
end

end

% NN
kn = 1;
p1_nn = zeros(1,L_x);
p2_nn = zeros(1,L_x);

for i = 1:L_x
index_sort1 = sort(abs(x1_train - x(i)));
V1 = 2 * index_sort1(kn);
index_sort2 = sort(abs(x2_train - x(i)));
V2 = 2 * index_sort2(kn);
if (V1 > 0)

p1_nn(i) = kn/train_data/V1;
end
if(V2 > 0)

p2_nn(i) = kn/train_data/V2;
end
if (p1_nn(i)>10)

p1_nn(i)=0;
end
if (p2_nn(i)>10)

p2_nn(i)=0;
end

end

figure
plot(x,prob1_train,'r-',x,prob2_train,'g-',x,p1_knn,'b-',x,p2_knn,'k-',x,p1_nn,'m-',x,p2_nn,
'c-','LineWidth',2);
legend('Class 1 Parzen','Class 2 Parzen','Class 1 KNN','Class 2 KNN','Class 1 NN','Class 2 
NN');
title('Comparison of Estimated Density Distribution');

%----------- TEST ----------------%

%Parzen window method
error1 = 0;
error2 = 0;

for i = 1:test_data
parzen = find(abs(x-x1_test(i)) <= 0.1);

if (prob1_train(parzen) < prob2_train(parzen))
error1 = error1 + 1;

end
parzen2 = find(abs(x-x2_test(i)) <= 0.1);
if(prob2_train(parzen2) < prob1_train(parzen2))

error2 = error2 + 1;
end

end

error_total = error1 + error2
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error_parzen_prob = error_total/(2*test_data)

% KNN
error_knn_total = 0;
error1 = 0;
error2 = 0;

for i = 1:test_data
j1_knn = find(abs(x-x1_test(i)) <=0.1);

if (p1_knn(j1_knn) < p2_knn(j1_knn))
error1 = error1 +1;

end

j2_knn = find (abs(x-x2_test(i))<=0.1);

if(p2_knn(j2_knn) < p1_knn(j2_knn))
error2 = error2 +1;

end
end
error_knn_total = (error1 + error2)/2/test_data

% NN
error_nn_total = 0;
error1 = 0;
error2 = 0;

for i = 1:test_data
j1_nn = find(abs(x-x1_test(i)) <=0.1);

if (p1_nn(j1_nn) < p2_nn(j1_nn))
error1 = error1 +1;

end

j2_nn = find (abs(x-x2_test(i))<=0.1);

if(p2_nn(j2_nn) < p1_nn(j2_nn))
error2 = error2 +1;

end
end
error_nn_total = (error1 + error2)/2/test_data
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