1. Can you find a sequence $\left\{a_{n}\right\}$ of real numbers where there are infinitely many n with $a_{n}>\limsup a_{n}$?
2. (a) Given a sequence $\left\{x_{1}, x_{2}, \ldots\right\}$ of real numbers, can you find a sequence, say, $\left\{a_{n}\right\}$ with $E=\left\{\right.$ limit points of $\left.\left\{a_{n}\right\}\right\}=\left\{x_{1}, x_{2}, \ldots\right\}$? Hint: First consider E not closed, and then consider E closed.
(b) Can you find a sequence $\left\{a_{n}\right\}$ of real numbers where $E=\{$ limit points of $\left.\left\{a_{n}\right\}\right\}=\mathbb{R}$?
3. Let $a_{n}, b_{n} \in \mathbb{R}$. Is it true that $\lim \sup a_{n} b_{n}=\lim \sup a_{n} \lim \sup b_{n}$? What if a_{n} and b_{n} are non-negative? Can you prove or disprove any inequality?
4. Given a sequence $\{a n\}$, let $\mathcal{A}=\left\{\left\{a_{n_{k}}\right\} ;\left\{a_{n_{k}}\right\}\right.$ a subsequence of $\left.\{a n\}\right\}$. What are the possible cardinalities of \mathcal{A} ?
5. Rudin's definition of the limit supremum is

$$
\limsup a_{n}=\sup E
$$

with E the set of limit points of $\left\{a_{n}\right\}$. Show this is equivalent to the following definition

$$
\limsup a_{n}=\lim _{n \rightarrow \infty} \sup _{k \geq n} a_{k} .
$$

Hint: $\sup _{k \geq n} a_{k}$ decreasing in n. Remark: This second definition is often easier in practice.
6. Given a sequence or real numbers $\left\{a_{n}\right\}$, let $A=\left\{\left\{a_{n_{k}}\right\}\right\}$ i.e., the family of subsequences. Is A countable or uncountable?
7. Suppose $a_{n}>0, a_{n} \rightarrow a>0,0<\lambda<\frac{1}{a}$ and show

$$
\sum_{0}^{\infty} \lambda^{n}\left(a_{0} a_{1} \ldots a_{n}\right)
$$

converges absolutely. (hint : compare to a geometric series).
8. In a metric space, show $\left\{a_{n}\right\}$ converges iff every subsequence $\left\{a_{n_{k}}\right\}$ has a further convergent subsequence $\left\{a_{n_{k_{j}}}\right\}$.
9. Suppose X is a complete metric space, and $\left\{G_{n}\right\}$ is a family of open sets, and each G_{n} is dense, i.e. $\bar{G}_{n}=X$. Show $\cap G_{n}$ is nonempty.

