Countability

1. Countable or uncountable (with proof)?
(a) $\oplus_{\mathbb{N}} \mathbb{Q}=\left\{\left(q_{1}, q_{2} \ldots\right) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \ldots\right.$: only finitely many q_{i} are non-zero. $\}$.
(b) $\Pi_{\mathbb{N}} \mathbb{Q}=\left\{\left(q_{1}, q_{2} \ldots\right) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \ldots\right\}$

Sets and mappings

2. Let $f: A \rightarrow B, A$ and B subsets or \mathbb{R}^{n}. True or false with proof:
(a) $\cup f^{-1}\left(B_{j}\right)=f^{-1}\left(\cup B_{j}\right)$
(b) $\cap f^{-1}\left(B_{j}\right)=f^{-1}\left(\cap B_{j}\right)$
(Here the $B_{j} \subseteq B$ and if the arbitrary union seems troubling, use only B_{1} and B_{2}.)

Convexity

3. Let A be a convex set in \mathbb{R}^{n} and show A^{o} and \bar{A} are convex also.
4. (a) Set $\|x\|_{p}:=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}$ for every $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and every $1 \leq p<\infty$. Show $d_{p}(x, y):=\|x-y\|_{p}$ is a metric. (Notice, $p=2$ is our usual Euclidean metric on \mathbb{R}^{n}.
(b) Now on \mathbb{R}^{2} let $A:=\left\{x:\|x\|_{1} \leq 1\right\}$, and show A is convex in $\left(\mathbb{R}^{2}, d_{1}\right)$ but not in the usual metric, $\left(\mathbb{R}^{n}, d_{2}\right)$.
5. (Lempert) Let A be an open, non-empty, convex set in \mathbb{R}^{n}, and show $A_{r}:=\left\{x \in A: d\left(x, A^{c}\right)<r\right\}$ is also convex.
6. For any open $G \subseteq \mathbb{R}$, show G is a countable union of balls, i.e. $\exists\left\{B_{r_{j}}\left(x_{j}\right)\right\}_{j \in \mathbb{N}}$ with $G=\cup_{j} B_{r_{j}}\left(x_{j}\right)$.
Metric Spaces and Topology
7. True of False:

If (X, d) is a non-empty metric space, and $x \in X$ then $\overline{N_{1}(x)}=\{y$: $d(x, y) \leq 1\}$
8. Recall, if G_{α} are open, and C_{α} are closed, then we know $\cup G_{\alpha}$ is open and $\cap C_{\alpha}$ is closed.

Exhibit an example of open sets, G_{α} in say \mathbb{R}^{n} such that $\cap G_{\alpha}$ is not open.
Notice, by de Morgan's Law, we obtain a sequence of closed C_{α} with $\cup C_{\alpha}$ not closed.
9. Consider \mathbb{Z} the integers as a subspace of \mathbb{R}. Let $A \subseteq \mathbb{Z}$. Is A open in \mathbb{Z} (i.e. is A open relative to \mathbb{Z} ?) Is A open in \mathbb{R}. What about closed relative to \mathbb{Z} ? \mathbb{R} ?
10. Prove a nonempty perfect subset of \mathbb{R} is uncountable.
11. Does there exist a dense proper open subset of \mathbb{R} ?
12. For each $j \in \mathbb{N}$ let G_{j} be a dense open subset of \mathbb{R}^{n}. Show $\cap_{j=1}^{\infty} G_{j}$ is non-empty.

