- 1. Countable or uncountable (with proof)?
 - (a) $\bigoplus_{\mathbb{N}} \mathbb{Q} = \{(q_1, q_2...) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times ... : \text{only finitely many } q_i \text{ are non-zero.}\}.$
 - (b) $\Pi_{\mathbb{N}}\mathbb{Q} = \{(q_1, q_2...) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times ...\}$
- 2. Let $f: A \to B$, A and B subsets or \mathbb{R}^n . True or false with proof:
 - (a) $\cup f^{-1}(A_j) = f^{-1}(\cup A_j)$ (b) $\cap f^{-1}(A_j) = f^{-1}(\cap A_j)$
- 3. Let A be a convex set in \mathbb{R}^n and show A^o and \overline{A} are convex also.
- 4. (Lempert) Let A be an open, non-empty, convex set in \mathbb{R}^n , and show $A_r := \{x \in A : d(x, A^c) < r\}$ is also convex.
- 5. For any open $G \subseteq \mathbb{R}$, show G is a countable union of balls, i.e. $\exists \{B_{r_j}(x_j)\}_{j\in\mathbb{N}}$ with $G = \bigcup_j B_{r_j}(x_j)$.
- 6. Ture of False:

If (X,d) is a non-empty metric space, and $x \in X$ then $\overline{N_1(x)} = \{y : d(x,y) \le 1\}$

7. Recall, if G_{α} are open, and C_{α} are closed, then we know $\cup G_{\alpha}$ is open and $\cap C_{\alpha}$ is closed.

Exhibit an example of open sets, G_{α} in say \mathbb{R}^n such that $\cap G_{\alpha}$ is not open.

Notice, by de Morgan's Law, we obtain a sequence C_{α} with $\cup C_{\alpha}$ not closed.

8. Consider \mathbb{Z} the integers as a subspace of \mathbb{R} . Let $A \subseteq \mathbb{Z}$. Is A open in \mathbb{Z} (i.e. is A open relative to \mathbb{Z} ?) Is A open in \mathbb{R} . What about closed relative to \mathbb{Z} ? \mathbb{R} ?