
1 Title: Generation of N-dimensional normally
distributed random numbers from two cate-
gories with different priors

2 Introduction

In the most of pattern recognition, decision and classification problems, the
concept of training becomes popular with the advance of Machine Learning
and computing power that can afford to expensive computatioal costs. Such
a trainable system is a record-holder for many open problems and its power-
ful capability is successfully built based on the massive volume of information
in a dataset. Due to the importance of data, people not only try to obtain
a big quantity of data, but also concentrate a good quality of data. Often, a
real-world data contains either high variance or high bias hence it is difficult to
estimate true density and using such data does not necessarily result in good
performance. In the circumstance, a naive assumption about the class distri-
bution helps us synthesize data so that we can train models with a consistent
dataset. Among many distributions, Normal distribution is frequently used in
many literatures. This tutorial will explain how to generate binary data classes
from normal distributions with prior probabilities in a perspective on numerical
experiments.

It consists of the following sections:

1. Prior selection : How to set priors?

2. Normal distribution : How it work? Which is more efficient?

(a) Central limit theorem

(b) Inverse transform sampling method

(c) Box-Muller transform

(d) Ziggurat Algorithm

3. Conversion from normalized distribution

4. Extension to N-dimensional data

5. Conclusion

3 Prior Selection

Prior probability gives an idea on which class is more likely to be observed
among all possible classes. For binary data classes with normal distributions, it
is important to draw samples based on priors before investigating how to gen-
erate distributions. This is because in practice the number of samples contains
implicit information about prior probability and also empirical prior is differ-
ent from the true prior used to determine class selection where the empirical
prior is calculated by only looking at the ratio of class 1 and class 2 for binary
classification example.

1

To be specific, prior probability affects the generation of samples for binary
classification in a way described in the following. First, sampling data from
uniform distribution (0, 1) and let the class priors be Prob(ω1) and Prob(ω2)
respectively where the condition Prob(ω1) + Prob(ω2) = 1 holds. If a random
sample is drawn in the range [0, P rob(ω1)], label the sample as class 1, then,
continue to generating a normal random number based on the class 1 statistics
(µ, σ). Otherwise, the sample belongs to [Prob(ω2), 1] and should be labeled as
class 2, then, move onto the normal random number generation step with the
class 2 statistics like the same way as we did for class 1. In summary,

Xi =

{
X1
i ∼ N(µ1, σ1) Xi ∈ [0, P rob(ω1)]

X2
i ∼ N(µ2, σ2) otherwise

where the superscript of Xi indicates the label of the class.

4 Normal Distribution Generation

Once you decide the class of the sample, now it is time to generate actual random
number that follows the class statistics determined in the prior selection step.
The normal distribution is frequetly used in many statistical models and being
able to draw samples from the normal distribution lies at the heart of many
probabilistic learning algorithms. The probability distribution function for the
normal distribution is defined as

y =
1√

2πσ2
exp

{
− (x− µ)

2

2σ2

}
(1)

where µ is the distribution mean and σ is the standard deviation.
It is easy to generate an uniform distribution, but usually generation of a

normal distribution requires additional steps rather than having a single step so-
lution. Central limit theorem, inverse transform sampling method, Box-Muller
transformation method and Ziggurat algorithm are examples to generate such
distribution, given a source of uniform distribution. Since each of methods has
its pros and cons, the optimal selection among those algorithm may differs under
different conditions.

4.1 Central Limit Theorem

Centrla limit theorem states that when a sufficiently large number of samples
drawn from independent random variables, the arithmetic mean of their distri-
butions will be have a normal distribution as commonly known as a bell-shaped
distribution. This implies that sampling from identical and independent uniform
distributions will result in a distribution which will be normally distributed as
the number of samples involved are large enough. This is shown in the following

lim
n→∞

X1 + · · ·+Xn

n
≈ µ

lim
n→∞

X2
1 + · · ·+X2

n

n
≈ σ2 + µ2

(2)

where {X1, . . . , Xn} be a random sample of size n and µ, σ represents the
mean and standard deviation for a normal distribution. However, in practice

2

approaching a normal probabilistic distribution to a high accuracy using only
central limit theorem requires an impractically large number of samples. There-
fore, using this method to generate normal distribution is expensive and not
plausible.

4.2 Inverse Transform Sampling Method

Inverse transform sampling method is a fundamental method in sampling for
random numbers and can generate any types of probabilistic distributions given
a source of uniform distributions. This method involves computing the quantile
function. Which of a probabilistic distribution is the inverse of its cumulative
distribution. Basically, it generates random numbers u from the uniform distri-
bution in the interval [0, 1]. Then, using equations for the desired probabilistic
distribution, it computes the value that satisfies F (x) = u. Finally, the number
x drawn from F density distribution is considered as a random sample.

Random numbers that follow a normal distribution can be obtained by the
following procedure. First, it starts from Poisson distribution described below.

p(k) = P (X = k) = e−λ
λk

k!
, k ≥ 0. (3)

λ and k are all deterministic since λ is a given mean and k is a nth point
of Poisson process. If we can simulate X = N(1) where {N(t) : t ≥ 0}, Poisson
random number X can be obtained by using the formula

X = N(1)− 1 = min {n ≥ 1 : tn > 1} − 1 (4)

where tn = X1 + · · · + Xn. The relation above comes from the exponential
term in Poisson distribution e−λn, that is Xi = − 1

λ lnui. Using such a relation
with additivity of logarithm helps to generate a Poisson random number easily
by consecutively adding Xi (equivalently, multiplying uniform random numbers
ui). Details are described as

X = min

{
n ≥ 1 :

n∑
i=1

ln(ui) < −α

}
− 1

= min

{
n ≥ 1 : ln

(
n∏
i=1

ui

)
< −α

}
− 1

= min

{
n ≥ 1 :

n∏
i=1

ui < e−α

}
− 1

(5)

where the product with new ui drawn from U ∼ uniform(0, 1) is repeated until
we find X =

∏n
i=1 ui < e−α. Note that for large λ in a Poisson, its distribution

is approximately normal with mean of λ and variance of λ by the central limit
theorem. As a result, a normal distribution can be generated once we obtain
a Poisson distribution based on the samples from uniform distribution using
inverse transform sampling method.

This method involves computing the quantile function of the distribution
which utilizes the cumulative distribution function and then inverting that func-
tion. This is why the terminology is called “inverse” method. For a discrete

3

distribution, summation over all individual samples drawn from uniform distri-
bution yields desired distributions. However, for a continuous cases, integration
over probability density function is needed like the same way as we did in dis-
crete domain, but it is impossible to obtain an analytical solution for most
distributions. This shortcoming makes this method computationally inefficient
in continuous domain and the alternative such as Box-Muller transform can be
used.

4.3 Box-Muller Transform

The method generates a normal distribution given a source of uniform distribu-
tion. Main key of this method is to utilize the relation between Cartesian and
polar coordinates. The polar form picks two samples from the interval, [1,+1],
and maps them to two independent samples that are normally distributed with-
out the use of sine or cosine functions. The relation between two different
domains can be characterized as few equations

r2 = x21 + x22, tan θ =
x2
x1

x1 = r cos θ, x2 = r sin θ
(6)

where θ ∈ [0, 2π] and we assume |r| ≤ 1 since we are going to use r ∼
uniform(0, 1) as a basic building block. Such region covers the area contained
in the unit circle in polar coordinate.

Box-Muller sampling is based on the joint distribution of two independent
random variables x1 ∼ N(0, 1), x2 ∼ N(0, 1) in Cartesian coordinate. If we
convert such distributions in polar coordinate, the joint distribution p(x1, x2)
becomes

p(x1, x2) = p(x1)p(x2)

=
1

2π
exp

{
−x

2
1

2

}
exp

{
−x

2
2

2

}
=

1

2π
exp

{
−x

2
1 + x22

2

}
=

1

2π
exp

{
−r2

2

}
(7)

From the last line of the equation, we can see that the distribution follows
an exponential distribution with respect to r2. Precisely, distributions in polar
coordinate are:

r2 ∼ exponential

(
1

2

)
, θ ∼ uniform (0, 2π) (8)

Since the angle θ already follows an uniform distribution, it can be simply
drawn from an uniform distribution. However, the additional work is needed
to generate the exponential distribution. The connection between uniform and
exponential can be formulated as follows:

exponential (λ) =
− log (uniform(0, 1))

λ
(9)

Then, combining with the equation in terms of r2 and solving for r gives,

4

r ∼
√
−2 log (uniform(0, 1)) (10)

Now all variables r and θ can be expressed in terms of uniform distributions.
By back-tracking above procedure, we will be able to successively generate a
normal distribution from out of uniform distributions. This way to generate
normal random numbers is known as Box-Muller transformations with polar
method, which makes Box-Muller transformation more efficient by avoiding di-
rect calculations of cosine and sine functions.

4.4 Ziggurat Algorithm

Ziggurat method is the fastest algorithm for generating normal random numbers.
It is more efficient than Box-Muller method but is more complicated algorithm.
Due to the efficiency and speed, it has been implemented in various libraries
such as GNU scientific library and MatLab.

This method partitions a target distribution into a small blocks so that the
whole distribution can be described as an union of blocks which is

Z =

C⋃
i=0

Bi (11)

where the area of each Bi is a rectangle whose width extends from x = 0 to
x = xi horizontally and whose height vertically extends from f(xi) to f(xi+1)
(details are shown in the following equation).

Bi =

{
1 {(x, y)|0 < x < xi, f(xi) < y < f(xi+1)}
0 otherwise

Here xis are x-values that monotonically increases from the center to the tail
for a given normal distribution.

The algorithm first choose a random block i among all possible Bis. Then, it
draws a random number u0 from uniform (0, 1) and calculate z by multiplying
the x-axis index i with u0. If the randomly generated z belongs to any of
partitioned blocks, z returns as a normal random number. Otherwise, it again
calculates a similar step for y-axis to check whether the sample belongs to
wedge or not. Since understanding of the principle of this algorithm requires
background knowledge, details are out of scope for this slecture and please refer
to the paper titled “The Ziggurat Method for Generating Random Variables”.

The critical values such as the edges of the rectangle (xi or f(xi)) used
in Ziggurat method are stored in memory, which improves efficiency in terms
of computational cost. Moreover, it does not need to evaluate an exponential
function all the time while Box-Muller method computes the exponential (or
logarithm) every time. The ziggurat algorithm will calculate an exponential
function only if samples are in the wedge. For these reason, the ziggurat algo-
rithm is the fastest way to generate but relatively difficult to implement it is
best used when large quantities of random numbers are needed.

5

5 Conversion from normalized distribution

Any normal distribution with µ0 and σ0 can be easily converted to another
normal distribution with a custom mean µ1 and standard deviation σ1. For
convenience and resource saving purpose, random numbers are generated from
normalized normal distribution that follows N(0, 1) from a single unified source,
then such numbers are converted to follow a custom normal distribution simply
using the following equation.

Z =
X − µ0

σ0
where Z ∼ N(0, 1) and X ∼ N(µ0, σ0)

X = σiZ + µi where Z ∼ N(0, 1) and X ∼ N(µi, σi)

(12)

6 Extension to N-dimensional data

Until now, we have studied how to generate normally distributed random num-
ber in 1-dimensional space. The same method can be extended to N-dimensional
space to create multi-dimensional random vectors whose underlying distribution
is normal. Compared to the previous case where we were using a scalar value
for a mean and a standard deviation, N-dimensional random vectors can be
obtained by repeating the single random number generation process N times,
then concatenating random numbers as a column-wise vector. This is possible
because all basis are orthogonal to each other and generating a single random
value in a vector does not affect the generation process of other components.
Note that prior selection is used to choose either class vector 1 or class vector
2. Once the class is determined by its prior drawn from uniform distribution,
random number generation process is repeated N times to fill out the random
vector. Each of which will follow class vector statistics, which are

M1 =


µ1
1

µ1
2
...
µ1
N

 S1 =


σ1
1

σ1
2
...
σ1
N

 M2 =


µ2
1

µ2
2
...
µ2
N

 S2 =


σ2
1

σ2
2
...
σ2
N

 (13)

where the superscript denotes the class label and the subscript indicates an
element index. M and S denotes a mean matrix and a standard deviation
matrix, respectively.

Surely, this method is no more available when more than two basis in a given
multi-dimension space are correlated. The scope of this work covers a general
case where all basis in the search space are orthogonal.

7 Conclusion

Now we understand how to generate N-dimensional normally distributed ran-
dom numbers from two categories with different priors using samples taken from
uniform distributions. The generation of random numbers with a normal dis-
tribution combined with the prior selection step discussed in the earlier section
provides statistically consistent datasets, which will improve the accuracy of

6

trainable systems. While class selection based on the prior probabilities is rela-
tively simple, the generation of random numbers with a normal distribution has
many issues to be considered because of the trade-off between its computational
cost and the accuracy. The four methods covered in this work have their own
pros and cons, but practically efficiency and complexity are the most important
concerns to be considered when deciding an optimal model for given task.

8 References

[1] Dong-U Lee, Wayne Luk, John Villasenor and Peter Cheung, ‘‘A Hardware Gaussian Noise Generator for Channel Code Evaluation’’

[2] Raul Toral and Amitabha Chakrabarti, ‘‘Generation of Gaussian distributed random numbers by using a numerical inversion method’’

[3] Hassan Edrees, Brian Cheung, McCullen Sandora, David Nummey and Deian Stefan ‘‘Hardware-Optimized Ziggurat Algorithm for High-Speed Gaussian Random Number Generators’’

[4] Central Limit Theorem, wikipedia, http://en.wikipedia.org/wiki/Central_limit_theorem

[5] Inverse Transform Sampling, wikipedia, http://en.wikipedia.org/wiki/Inverse_transform_sampling

[6] Box-Muller Transform, wikipedia, http://en.wikipedia.org/wiki/Box_Muller_transform

[7] Box-Muller Transformation, mathworld, http://mathworld.wolfram.com/Box-MullerTransformation.html

[8] Emiliano A. Valdez, Lecture note, http://www.math.uconn.edu/~valdez/math3634s09/Math3634-Weeks4to5.pdf

[9] Karl Sigman, Lecture note, http://www.columbia.edu/~ks20/4404-Sigman/4404-Notes-ITM.pdf

[10] Henrik Schoioler, Lecture note, http://www.control.auc.dk/~henrik/undervisning/DES/lec03.pdf

[11] http://theclevermachine.wordpress.com/2012/09/11/sampling-from-the-normal-distribution-using-the-box-muller-transform/

7

