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1. Introduction 

This slecture introduces two local density estimation methods which are Parzen 

density estimation and k-nearest neighbor density estimation. Local density estimation 

is also referred to as non-parametric density estimation. To make things clear, let’s 

first look at parametric density estimation. In parametric density estimation, we can 

assume that there exists a density function which can be determined by a set of 

parameters. The set of parameters are estimated from the sample data and are later 

used in designing the classifier. However, in some practical situations the assumption 

that there exists a parametric form of the density function does not hold true. For 

example, it is very hard to fit a multimodal probability distribution with a simple 

function. In this case, we need to estimate the density function in the nonparametric 

way, which means that the density function is estimated locally based on a small set of 

neighboring samples. Because of this locality, local (nonparametric) density 

estimation is less accurate than parametric density estimation. In the following text 

the word “local” is preferred over “nonparametric.” 

 

It is noteworthy that it is very difficult to obtain an accurate local density estimation, 

especially when the dimension of the feature space is high. So why do we bother 

using local density estimation? This is because our goal is not to get an accurate 

estimation, but rather to use the estimation to design a well performed classifier. The 

inaccuracy of local density estimation does not necessarily lead to a poor decision 

rule. 

2. General Principle 

In local density estimation the density function pn(x) can be approximated by 
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where vn is the volume of a small region R around point x, n is the total number of 

samples xi (i =1, 2…, n) drawn according to pn(x), and kn is the number of xi’s which 

fall into region R. The reason why pn(x) can be calculated in this way is that pn(x) does 

not vary much within a relatively small region, thus the probability mass of region R 

can be approximated by pn(x)vn, which equals kn/n.  

 

Some examples of region R in different dimensions: i) line segment in one-dimension, 

ii) circle or rectangle in two-dimension, iii) sphere or cube in three-dimension, iv) 

hyper sphere or hypercube in d-dimension (d > 3). 

 

Three conditions we need to pay attention to when using formula (1) are: 

i) lim 0n
n

v


 . This is because if vn is fixed, then pn(x) only represents the average 

probability density as n grows larger, but what we need is the point probability density, 



so we should have 0nv   when n . 

ii) lim n
n

k


  . This is to make sure that we do not get zero probability density. 

iii) lim / 0n
n

k n


 . This is to make sure that pn(x) does not diverge. 

3. Parzen Density Estimation 

In Parzen density estimation vn is directly determined by n while kn is a random 

variable which denotes the number of samples that fall into vn. Assume that the region 

R is a d-dimensional hypercube with its edge length hn, thus  

vn = (hn)
d
 

The equivalent conditions which meet the aforementioned three conditions are: 

lim 0n
n

v
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  and lim n
n

nv


   

Therefore vn can be chosen as /nv h n  or / lnnv h n , where h is an adjustable 

constant. Now that the relationship between vn and n is defined, the next step is to 

determine kn. To determine kn, we define a window function as follows: 
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where xi’s (i = 1, 2, …, n) are the given samples and x is the point where the density is 

to be estimated. Thus we have 
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The function   is called a Parzen window function, which enables us to count the 

number of sample points in the hypercube with its edge length hn. 

 

According to [2], using hypercube as the window function may lead to discontinuity 

in the estimation. This is due to the superimposition of sharp pulses centered at the 

given sample points when h is small. To overcome this shortcoming, we can consider 

a more general form of window function rather than the hypercube. Note that if the 

following two conditions are met, the estimated pn(x) is guaranteed to be proper.  

http://www.cse.buffalo.edu/~jcorso/t/CSE555/files/annote_28feb_nonprm.pdf


( ) 0x   and ( ) 1x dx   

Therefore a better choice of window function which removes discontinuity can be 

Gaussian window:  
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The estimated density is given by 

                       
1

2

1

2

1 1
exp

2

n

n

n ni

ip x
n

x x

hv 

  
   
   

                  (2) 

Consider a one-dimension case, assume that /nv h n , thus /n nh v h n  , 

where h is an adjustable constant. Substitute into formula (2) we have 
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We can see that if n equals one, pn(x) is just the window function. If n approaches 

infinity, pn(x) can converge to any complex form. If n is relatively small, pn(x) is very 

sensitive to the value of h. In general small h leads to the noise error while large h 

leads to the over-smoothing error, which can be illustrated by the following example. 

 

In this experiment samples are 5000 points on 2-D plane with Gaussian distribution. 

The mean vector is [1 2], and the covariance matrix is [1 0; 0 1]. Choose rectangle 

Parzen window with 44 /nh n , thus 2( ) 16 /n nv h n  . Fig. 1 shows the sample 

distribution. Fig. 2 shows the ideal probability density distribution. Fig. 3 shows the 

result of Parzen density estimation. 

 
Figure 1. 5000 sample points on 2-D plane with Gaussian distribution 



 
Figure 2. The ideal probability density distribution 

 

Figure 3. The result of Parzen density estimation 

Next we change the value of hn and see how it affects the estimation. Fig. 4 shows the 

result of Parzen density estimation when hn is twice its initial value. Fig. 5 shows the 

result of Parzen density estimation when hn is its initial value divided by two. We can 

see that the results agree with the aforesaid property of hn. 



 

Figure 4. The result of Parzen density estimation when hn is twice its initial value 

 

Figure 5. The result of Parzen density estimation when hn is its initial value divided by two 

To design a classifier using Parzen window method [3], we estimate the densities for 

each class and classify the test point by the label corresponding to the maximum 

posterior.  

 

Below lists some advantages and disadvantages of Parzen density estimation: 

 

Advantages: i) pn(x) can converge to any complex form when n approaches infinity; ii) 

applicable to data with any distribution. 

 

Disadvantages: i) need a large number of samples to obtain an accurate estimation; ii) 

computationally expensive, not suitable for feature space with very high dimensions; 

http://www.csd.uwo.ca/~olga/Courses/CS434a_541a/Lecture6.pdf


iii) the adjustable constant h has a relatively heavy influence on the decision 

boundaries when n is small, and is not easy to choose in practice.  

4. K-Nearest Neighbor Density Estimation 

In k-nearest neighbor density estimation (use acronym “k-NN” in the following text) k 

is directly determined by n while v is a random variable which denotes the volume 

that encompasses just k sample points inside v and on its boundary. If v is a sphere, it 

can be given by 
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where h is the radius of the sphere with center x. hk equals ||xlk - x|| where xlk is the k
th

 

closest sample point to x. Then the probability density at x is approximated by  
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where k1 is number of sample points on the boundary of vk(x). Most of the time 

formula (3) can be rewritten as  
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It can be proved that [ ( )] ( )E p x p x . 

 

In Parzen density estimation vn only depends on n and is the same for all the test 

points, while in k-NN vn is smaller at high density area and is larger at low density 

area. This strategy seems more reasonable than the strategy to determine vn in Parzen 

density estimation since now vn is adaptive to the local density.  

 

In practice, when we want to classify data using k-NN estimation, it turns out that we 

can get the posterior p(wi |x) directly without worrying about p(x). If we have k 

samples fall into volume v around point x, and among the k samples there are ki 

samples belonging to class wi, then we have  
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The posterior p(wi |x) is given by 
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where m is the number of classes. Formula (4) tells us one simple decision rule: the 



class of a test point x is the same as the most frequent one among the nearest k points 

of x. Simple and intuitive, isn’t it? Having said that, choosing k in k-NN is still a 

nontrivial problem as choosing h in Parzen density estimation. Small k leads to noisy 

decision boundaries while large k leads to over-smoothed boundaries, which is 

illustrated by the following example. 

 

In this experiment samples are 200 pre-labeled (red or blue) points. The task is to find 

the classification boundaries under different k values. Fig. 6-9 show the results. 

 
Figure 6. k-NN decision boundaries experiment (k=2) 

 

Figure 7. k-NN decision boundaries experiment (k=3) 

 

 

 



 

Figure 8. k-NN decision boundaries experiment (k=5) 

 
Figure 9. k-NN decision boundaries experiment (k=8) 

In practice we can use cross-validation to choose the “best” k. Below lists some 

advantages and disadvantages of k-NN: 

 

Advantages: i) decision performance is good if n is large enough; ii) applicable to data 

with any distribution; iii) simple and intuitive. 

 

Disadvantages: i) need a large number of samples to obtain an accurate estimation, 

which is inevitable in local density estimation; ii) computationally expensive, low 

efficiency for feature space with very high dimensions; iii) choosing the “best” k is 

nontrivial. 
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