## Assignment 4: Integration

1. True or false: If $f$ is a non-negative function defined on $\mathbf{R}$ and

$$
\int_{\mathbf{R}} f d x<\infty
$$

then $\lim _{|x| \rightarrow \infty} f(x)=0$.
2. Let $(X, \mathcal{F}, \mu)$ be a measure space and $f \in L(\mu)$. Show that $\{f \neq 0\}$ is $\sigma$-finite.
3. True or false: Let $(X, \mathcal{F}, \mu)$ be a finite measure space, $\left\{f_{n}\right\}$ a non-increasing sequence of non-negative functions which converges to $f$. Then $\int_{X} f_{n} d \mu \rightarrow \int_{X} f d \mu$.
4. Let $f$ be a non-negative measurable function on $\mathbf{R}$. Prove that if

$$
\sum_{n=-\infty}^{\infty} f(x+n)
$$

is integrable, then $f=0$ a.e.
5. Let $\left\{r_{1}, r_{2}, \ldots\right\}$ be an enumeration of $\mathbf{Q} \cap[0,1]$, and let $f(x)=\sum_{\left\{n: x>r_{n}\right\}} 2^{-n}$. Compute $\|f\|_{1}$.
6. Prove that the sum

$$
\sum_{n=0}^{\infty} \int_{0}^{\pi / 2}(1-\sqrt{\sin x})^{n} \cos x d x
$$

converges to a finite limit, and find its value.
7. Let $f$ be a continuous function on $I=[-1,1]$ with the property that $\int_{I} x^{n} f(x) d x=0$ for $n=0,1,2, \ldots$. Show that $f$ is identically zero.
8. If $f \in L_{1}[0,1]$, show that given $\epsilon>0$ there exists $\delta>0$ such that $\mu(A)<\delta$ implies $\int_{A}|f|<\epsilon$.
9. (a) Let $f \in L^{1}(0, \infty)$. Prove that there exists a sequence $x_{k} \nearrow \infty$ such that

$$
\lim _{k \rightarrow \infty}\left|f\left(x_{k}\right)\right|=0
$$

(b) Let $f \in L^{1}\left(\mathbf{R}^{n}\right)$ with $n \geq 2$. Prove that there exists a sequence $R_{k} \nearrow \infty$ such that

$$
\lim _{k \rightarrow \infty} R_{k} \int_{S\left(0, R_{k}\right)}|f| d \sigma=0
$$

where $S(0, r)=\left\{x \in \mathbf{R}^{n}| | x \mid=r\right\}$, and $d \sigma$ represents the (n-1)dimensional Lebesgue measure induced on the sphere $S(0, r)$.
10. Prove for every $\xi \in \mathbf{R}^{n}$ prove the existence of the limit

$$
\lim _{k \rightarrow \infty} \int_{\mathbf{R}^{n}} \frac{e^{-2 \pi i<\xi, x>} e^{-|x|^{2}}}{\left(k^{-n}+k|x|^{2}\right)^{(1 / 2)(n+1)}} d x
$$

and compute it explicitly in terms of the $(n-1)$-dimensional measure $\sigma_{n-1}$ of the unit sphere in $\mathbf{R}^{\mathbf{n}}$, and the Beta function

$$
B(x, y):=2 \int_{0}^{\pi / 2} \cos (\theta)^{2 x-1} \sin (\theta)^{2 y-1} d \theta, x, y>0
$$

Remark: Note carefully that you are not required to know or write explicity the value of $\sigma_{n-1}$.
11. Let $f_{1}, f_{2}, \ldots$ be functions on $\mathbf{R}^{n}$ such that

$$
\int_{\mathbf{R}^{n}} f_{k}=1, k \geq 1, \text { and } 0 \leq f_{k} \leq \frac{1}{k}
$$

Prove $\int_{\mathbf{R}^{n}} \sup _{k \geq 1} f_{k}=\infty$.
12. Let $f$ be a function on $(-\infty, \infty)$ such that given $\epsilon>0$ there is a polynomial $p(x)$ such that $|p(x)-f(x)|<\epsilon$ for all $x \in \mathbf{R}$. Show that $f$ is a polynomial.
13. Let $f$ be a real-valued measurable function on $[a, b]$ such that $\int_{a}^{b} f^{n} d x=c$ for $n=2,3,4$. Show that $f=\chi_{A}$ a.e. for some measurable set $A \subset[a, b]$.
14. Let $(X, \mathcal{F}, \mu)$ be a finite measure space, and $f$ a measurable extended real-valued function defined on $X$. Show that $f \in L(\mu)$ if and only if

$$
\sum_{k=1}^{\infty} \mu\{|f| \geq k\}<\infty
$$

15. Let $f$ be a continuous function on $[-1,1]$. Find

$$
\lim _{n} \int_{-1}^{1} f(x)(1-n|x|) d x
$$

16. True or false: If $f \in L^{1}(\mathbf{R})$ and $\left\|f \chi_{A}\right\|_{1}=0$ for all measurable sets $A$ satisfying $\mu(A)=\pi$, then $f=0$ a.e.
17. Show that if $f_{n} \rightarrow f$ a.e., $f_{n} \geq 0, g_{n} \rightarrow g$ a.e., $f_{n} \leq g_{n}$ a.e., and $\left\|g_{n}\right\|_{1} \rightarrow$ $\|g\|_{1}$, then $\left\|f_{n}\right\|_{1} \rightarrow\|f\|_{1}$.
18. Calculate $\lim _{t \rightarrow 0^{+}} \int_{0}^{1} \frac{e^{-t \ln x}-1}{t} d x$. (Hint: don't think too hard).
19. Let $\alpha \geq 1$ and compute, with justification,

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi} n \ln \left[1+\left(\frac{\sin x}{n}\right)^{\alpha}\right] d x
$$

20. Let $(X, \mathcal{F}, \mu)$ be a measure space and let $f: X \rightarrow[0, \infty]$ be measurable with $f \in L^{1}(X, \mu)$. Compute

$$
\lim _{n \rightarrow \infty} \int_{X} n \arctan \left[(f / n)^{\alpha}\right] d \mu, \alpha \in(0, \infty)
$$

21. Determine whether the limits exist, and if so, compute their values:
(a) $\lim _{n \rightarrow \infty} n \int_{-1}^{1} e^{-\left(\frac{n x+1}{n}\right)^{2}}-e^{-x^{2}} d x$
(b) $\lim _{n \rightarrow \infty} n \int_{-\infty}^{\infty} e^{-\left(\frac{n x+1}{n}\right)^{2}}-e^{-x^{2}} d x$
22. Define $F(t)=\int_{0}^{\infty} t^{3} e^{-t^{2} x} d x$. Show that $F(t)$ is differentiable, and compute $F^{\prime}(0)$.
