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1 INTRODUCTION

In this slecture, we discuss Bayes rule that is widely used for many different kinds of applica-
tions, especially, pattern recognition. Due to its simplicity and effectiveness, we can use the
method in both discrete values case and continuous values case, and it also usually works well
in multi-dimensional feature space. So, we will take a look at what the definition of Bayes rule is,
how it can be used for the classification task with examples, and how we can derive it in different
cases.

2 BAYES THEOREM

Bayes theorem is a probabilistic theory that can explain a relationship between the prior proba-
bility and the posterior probability of two random variables or events. Give two events A and B,
we may want to know P(A|B) and it can be obtained if we know knowledge for other probabili-
ties, P(B|A), P(A), and P(B). By the definition of the conditional probability, a joint probability
of Aand B, P(A, B), is the product of P(A|B)P(B). We can also write P(A, B) = P(B|A)P(A). From
those two equations, P(A|B)P(B) = P(B|A)P(A) and we can conclude

P(B|A)P(A)
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The formula above is called Bayes Theorem. Let’s see an example. Suppose that a man told you
that he had a nice conversation with a person. Assuming the populations of male and female
are the same, the probability that his conversational partner was a woman is 0.5. However,
if he gives you additional information that the conversational partner had long hair, then the
probability of the partner being a woman will be higher than 0.5 because women are more likely
to have long hair. So, let W be an event that the conversational partner was a women and L be
an event that a person has a long haired person. Suppose that 75% of all women have long hair,
15% of men have long hair, and both genders are equally likely. That is, P(W|L) = 0.75,P(W) =
P(M) = 0.5, and these are what we already know. With these information, we can say that the
probability that the person who he had a conversation with was a woman is
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Here is another example. In a public university, 51% of the students are males. One adult is
randomly selected for a survey. It turned out later that the selected survey subject was studying
sciences. Also, 10% of students study sciences while 5% of females study sciences. What is the
probability that the selected subject is a male? Let’s use the following notations:

e P(M) =0.51 because 51% of students are males
e P(M) = 0.49 because 49% of students are females
e P(S|M) =0.1 because 10% of the male students study sciences

e P(S|M) = 0.05 because 5% of the female students study sciences

Now, in order to figure out the probability that the survey subject is a male given the subject
studies sciences, P(M|S), we can apply Bayes theorem as following

P(SIM)P(M)
P(S)
_ P(S|M)P(M)
P(S|M)P(M) + P(S|M)P(M)
0.1 x0.51

T 0.1%051+049%0.05
0051

©0.0755
~0.675 = 67.5%

P(M|S) =




3 CLASSIFICATION BY BAYES RULE

In this section, we investigate how Bayes rule can be used for the task of classification. Suppose
that there are many classes w1, w», ..., w. and data that should belong to one of those classes. So,
what we want to do is to classify new data that do not have any class information into one of the
classes, based on training data whose class membership information is already known. Using
Bayes rule, the probability that a new data x belongs to class w; is given by

pxlwi) P(w;)

p(x)
_ pxlwi)Pwy)
Yo cp(xlw) Plw))

P(w;|x) =

where p is a density function for continuous values. Now we can compare probability values of
P(w;|x) for each class and make a decision by taking one with higher probability as following
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From now on, we consider only two class classification problem for simplicity. Let g;(x) =
p(xlw1)P(wy) and g2 (x) = p(x|wz) P(w2). Then we can decide class w, for x if g; (x) = g2(x), oth-
erwise, decide class w,. Equivalently, we can define a discriminant function g(x) = g1(x) — g2(x)
and decide class w if g(x) = 0, otherwise class w,. We here need to notice followings

e The discriminant function g(x) is not unique. As long as the discriminant function is
monotonically increasing, it will make the same decision. (e.g., g(x) =Ing;(x) —In g»(x))

¢ We do not need to know the actual function g(x), but need to know just its sign.

Then what is the expected value of the error when we make decision by following Bayes rule?
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Figure 3.1: Error area of two distributions

Note that g(x) = 0 has at most 2 solutions, which means that those two distributions for w; and
w» have one intersection or two intersections. Let’s look the case of one intersection at the point
t.
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In Figure 3.1, the shaded region represents the probability that data would be misclassified, that

is, error. Let ¢ be an intersection point. Based on Bayes rule, we should classify all data on the
left of t into w, and all other data that are on the right of ¢ will be classified into w;. Therefore, as
the region is larger, in other words, two distributions share larger overlapped area, the expected
error will be increasing.

The following sections describe two cases of classification. One is where data exist in 1-dimensional
feature space and the other is where data exist in N-dimensional feature space.
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4 CASE 1: 1-DIMENSIONAL FEATURE SPACE

For simplicity, samples x; of class w; are drawn from Gaussian distribution x; ~ N(u;, 0?). Then,
the class-conditional density is given by
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where C; is a constant value which is independent of x. Finally, we can use the following dis-
criminant function
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So, given a value of x, we can assign class to x based on the sign of the discriminant function
above.

5 CASE 2: N-DIMENSIONAL FEATURE SPACE

Let’s assume that each data is drawn from Multivariate Gaussian distribution with mean y; and
standard deviation matrix X;. Then the class-conditional density is given by
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Figure 5.1: Two class classification in 3-dimensional feature space

Note that the first term is actually —% square of Mahalanobis distance from X to fi; and the
remaining terms are independent of X, which means that the closer X is to fi;, the larger g;(x)
is. We can also observe that if the standard deviation matrix X is equal to I(identity matrix) the
Mahalanobis distance at the first term of the equation above becomes Euclidean distance, that
is,
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and the second term can be ignored since it is constant and independent of X In two-class clas-
sification, we should decide w; if
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otherwise, we should decide w»



