1. Let $f:[0,1] \cup[2,3] \rightarrow \mathbb{R}$ continuous. If the image of f is connected, show f is not 1-1.
2. Let A and B be subsets of a metric space X.
(a) Recall $d(x, A):=\inf _{A} d(x, a)$. If A is compact, show there is some $a \in A$ where the distance is obtained.
(b) Suppose $X=\mathbb{R}^{n}$ and A is only assumed to be closed. Prove the result still holds.
(c) Find a counter-example to show this is false in general when A is assumed only to be closed.
(d) Now define $d(A, B):=\inf \{d(a, b): a \in A, b \in B\}$. Show that if A and B are both compact there are $a \in A, b \in B$ for which the distance is obtained.
(e) Can we relax this condition?
