This is a 2 hour practice exam. Do 8 of the 10 .

1. Let $f: X \rightarrow Y$ with X, Y both metric spaces. Prove that if for all $x, x_{n} \in X, x_{n} \rightarrow x$ we have $f\left(x_{n}\right) \rightarrow f(x)$ then f is continuous at x.
2. Let

$$
f= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ 0 & \text { else }\end{cases}
$$

Find (with proof) the set on which f is continuous.
3. Proof or counter-example: the product of 2 uniformly continuous functions is uniformly continuous.
4. Find without proof a function who has a derivative (everywhere), but the derivative is discontinuous.
5. Converge absolutely? (with proof)

$$
\sum_{n=100}^{\infty} \frac{\log ^{2}\left(n^{n}\right) \sin \left(n^{2}+4 n!\right)}{\left(n^{2}-4 n+7\right)^{2}}
$$

6 . For what x does the following sum converge?

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+x^{n}}
$$

7. $f: \mathbb{R} \rightarrow \mathbb{R}$, continuous and

$$
\lim _{|x| \rightarrow \infty} f(x)=0=\lim _{|x| \rightarrow \infty} f(1 / x)
$$

Show $f(\mathbb{R})$ is compact.
8. $f: \mathbb{R} \rightarrow \mathbb{R}, f(0)=0$. For all $\left|x_{n}\right| \rightarrow \infty, \sum x_{n} f\left(1 / x_{n}\right)$ converges. Show $f^{\prime}(0)$ exists and is zero.
9. Consider $\left\{x^{n}\right\}_{n=1}^{\infty}$ with domain $[0,1]$ and show this family is not equicontinuous.
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly continuous, and show there is some function of the form $y=m|x|+b$ such that $y \geq f \geq-y$.

