Convergence and Absolute Convergence:

A series $\sum_{-\infty}^{\infty} a_n$ is called 'absolutely convergent' when $\sum_{-\infty}^{\infty} |a_n|$ converges

Fact about convergence:

- If $\sum_{-\infty}^{\infty} |a_n|$ converges, then $\sum_{-\infty}^{\infty} a_n$ converges also.
- X(z) converges absolutely, if and only if $\sum_{n} |x[n]| z^{-n}$ converges

In literature and ECE 438, referring to Region of Convergence (R.O.C) is actually referring to Region of 'Absolute' Convergence

Facts about R.O.C.:

- R.O.C. is made up of rings around origin. If z_o is in the R.O.C., then any other z with $|z|>|z_o|$ is also in the R.O.C.
 - o This relationship can be viewed in the sketch below:

- If x[n] is 'causal' and z_o is in the R.O.C., then any z with $|z|>|z_o|$ is also in the R.O.C.

o 'causal'
$$\rightarrow x[n] = 0 \ \forall n < 0$$

PROOF: for z with $|z| > |z_o|$

$$\begin{split} \sum_{-\infty}^{\infty} &|x[n]| z^{-n}| = \sum_{0}^{\infty} &|x[n]| z^{-n}| \\ &= \sum_{0}^{\infty} &|x[n]| ||z^{-n}|| \text{ {where z > z_o; }} |z|^{-n} < ||z_o||^{-n}, \text{ since n > 0} \\ &\leq \sum_{0}^{\infty} &|x[n]| ||z_o|^{-n}| \end{split}$$

= $\sum_{-\infty}^{\infty} |x[n]| z_o^{-n}|$ \leftarrow converges by assumption; $\therefore X(z)$ converges absolutely

- If x[n] is anti-causal and $z_o \in R.O.C$, then any z with $|z| < |z_o|$ is also in the R.O.C.
 - o 'anti-causal' $\rightarrow x[n] = 0 \ \forall > 0$
 - o This relationship can be viewed in the sketch below:

- If x[n] is mixed-causal (two sided signal), and $z_o \in R$. O. C then there exists r_1 , $r_2 \in R = r_2$; r_1 , $r_2 \in R = r_2$ such that X(z) converges for all z with $r_1 < |z_o| < r_2$
 - o This relationship can be viewed in the sketch below:

