
ECE662: Pattern Recognition and Decision
Making Processes: HW TWO

Purdue University
Department of Electrical and Computer Engineering

West Lafayette,
INDIANA, USA

Abstract. In this report experiments are carried out to evaluate some
of the techniques that we have covered in the ECE662 course mate-
rial. In particular in the first exercise a numerical experiment is carried
out to test effect of applying a Fischer linear discriminant approach to
linearly separable data. An extra step is also take to test the effect of
the technique on non-linearly separable data. In the second part of the
experiment we look at the classifiers designed using Support Vector Ma-
chines and the Neural Network approach. The performance of the two
methods on the same dataset is compared. The third part of the experi-
ment covers the comparison of a classifier designed using the Parzen and
K-Nearest Neighbor(KNN) techniques. In all the exercises some results
are found to confirm the theoretical conclusions the in course. On some
cases where results seem to be different than expected, a motivation is
given based on the outcome. Three data sets were used and the complex
of the data sets vary from linearly separable to non linearly separable.

1 Fisher’s Linear Discriminant

This is a linear classification model that is in terms of dimensionality reduction.
We will consider the case of 2 classes and suppose we take the D-dimensional
input vector x and project it down to one dimension using:

y = wT x (1)

If we place a threshold on y and classify y ≥ −w0 as class C1, and other-
wise class C2, then this projection to one dimension might lead us to loss of
information and data that is well separated in D-dimensional space will end up
being overlapped in one dimension. However, by adjusting the components of the
weight vector w, one can select a projection that maximizes the class separa-
tion. As mentioned above the experiment for this exercise will be for a two class
problem. But first we will derive the cost function for maximizing the choice of
the weights and the direction of optimal projection. We consider the problem
to consist of N1 points of class C1 and N2 points of class C2 so that the mean
vectors of the two classes are given by

m1 =
1

N1

∑
nεC1

xn (2)

m2 =
1

N2

∑
nεC2

xn (3)

From the above equations: The simplest measure of the separation of the
classes, when projected onto w, is the separation of the projected class means.
This then suggest that we might choose w so as to maximize:

m2 −m1 = wT (m2 −m1)m1,2 = wT m1,2 (4)

However equation 4 can be made to be arbitrarily large simply by increasing
the magnitude of w. To solve this problem, we could constrain w to have a unit
length, so that, [1]: ∑

i

w2
i = 1 (5)

Using a Lagrange multiplier to perform the constrained maximization, we
then find that:

w ∝ (m2 −m1) (6)

Again with this approach we might still run into problems of classes over-
lapping due to the strongly non diagonal covariances of the class distributions.
Fisher’s idea to resolve this problem is outlined in the following: The idea is to
maximize a function that will give a large separation between the projected class
means while also giving a small variance within each class, thereby minimizing
the class overlap.

Equation 1 transforms the set of labelled data points in x into a labelled set
in the 1-dimensional space y. The within-class variance of the transformed data
Ck is therefore given by:

s2
k =

∑
nεCk

(yn −mk)2ynwT x (7)

We can define the total within-class variance for the whole data set to be
simply s2

1 + s2
2. Fisher’s criterion is defined to be the ratio of the between-class

variance to the within-class variance and is given by, [1]:

J(w) =
(m2 −m1)2

s2
1 + s2

2

(8)

Making use of substitution of equations 1 to 7 equation 8 can be written in
the form:

J(w) =
wT SBw
wT SW w

(9)

SB is the between− class covariance matrix and is given by:

SB = (m2 −m1)(m2 −m1)T (10)

SW is the total within− class covariance matrix, given by:

SW =
∑
nεC1

(xn −m1)(xn −m1)T +
∑
nεC2

(xn −m2)(xn −m2)T (11)

Differentiating equation 9 with respect to w, we find that J(w) is maximized
when

wT SBwSW w = wT SW wSBw (12)

From equation 10 we see that SBw is in the direction of m2 −m1. Further-
more we are not interested in the magnitude of w, only its direction, and so we
can drop the scalar factors, wT SBw and wT SW w. Multiplying both sides of
equation 12 by S−1

W we then obtain:

w ∝ S−1
W (m2 −m1) (13)

From equation 13 we notice that if the within class covariance is isotropic, so
that SW is proportional to the identity matrix, we find that w is proportional
to the difference between the means as shown by equation 6 The above theory is
applied to two different experiments: The first experiment makes use of Fischer’s
iris data. The data consists of 150 observations containing four measurements
based on the petals and sepals of three species of iris. The species are: Iris setosa,
Iris virginica, Iris versicolor. First we choose the two features from the two of any
combination from the three species above and we calculate the optimal weights
required to separate the data well.

Iris data optimal weights using:

SW =
(

0.0492 0.0776
0.0776 0.2460

)
(14)

W =
(
−7.9797
−8.8588

)
(15)

The projection of the data to W is shown in fig 1. As can be seen from scatter
plot of the original data, when this data is projected onto the one-dimensional
plane, the data is well separated. It must be noted that the effect of Fischer’s
discriminant does not bring about any improvement in separating the data be-
cause the data was well separated already. In fig 2 we consider data that is not
well separated. On this data we perform the calculation of optimal weights twice:
(a) calculate optimal direction with Sw not set to an identity matrix and (b)
calculate optimal direction with Sw set to I. The projection of the data to planes
of optimal directions are shown in fig 3.

Setting SW to the identity matrix:

SW2 =
(

1 0
0 1

)
(16)

W2 =
(
−1.0800
−2.7980

)
(17)

Fig. 1. Projection of Iris Setosa Feature 3 and 4 vs Versicolor Features 2 and 3

The second experiment consist of two class gaussian clouded data([2]).The
optimal weights for the data in fig 4 are calculated and the direction of optimal
class separation is established. The projection of data along the weights direction
is shown in fig 5.

SW =
(

2.0649 0.0514
0.0514 1.9720

)
(18)

Woptimal =
(

0.4745
0.4726

)
(19)

Setting SW to the identity matrix

SW2 =
(

1 0
0 1

)
(20)

W2 =
(

1.0041
0.9565

)
(21)

Fig. 2. Projection of Iris Setosa Feature 3 and 2 vs Versicolor Features 4 and 3

Fig. 3. Projection of Iris Setosa

Fig. 4. Gaussian clouded data

Fig. 5. Projection of clouds

Fig. 6. Projection of clouds with few data points SW 6= I

Classifying the data in fig 5 using the Maximum Likelihood to computer the
parameters: MLE Classifier parameters are:

Class0 mean0 =
(

1.1
0.85

)
(22)

Cov0 =
(

0.838 1.08
1.08 1.4

)
(23)

Class1 : mean1 =
(
−0.304
−1.48

)
(24)

Cov1 =
(

1.88 0.788
0.788 0.526

)
(25)

1.1 Error Computation Table for the Bayes Decision Region

Class 0 Class 1 Total error
Train Error 0.24 0.23 0.24
Test Error 0.26 0.24 0.23

Optimal Bayes Error 0.056 0.15 0.103
The classification performance from both of these experiments was carried

out with 40 percent hold out of data and the rest used for training the classifier.
Note that classification was only performed on the data in fig 4 and the projection
planes shows no significant difference between SW = I and SW 6= I. As can be
observed from fig 5 for highly correlated data setting SW to I yields no significant
improvement in making the data more separable. Thus the conclusion that one

can draw from both the experiments above is: When data is linearly separable
setting SW to I can improve the computation of the weights and also the result
is a weight direction that is not necessarily the same as when SW is not set to
the identity matrix. For non linear data setting SW results in a weight direction
almost the same as non identity SW and also choosing the identity can improve
the computation if the data is all isotropic.

2 Classification using Neural Network and Support
Vector Machines

2.1 Neural Network (NN): What is a NN

An Artificial Neural Network (ANN) is an information processing paradigm that
is inspired by the way biological nervous systems, such as the brain, process
information. The key element of this approach is the novel structure of the
information processing system. It is composed of a large number of highly in-
terconnected processing elements (neurones) working in unison to solve specific
problems. ANNs, like people, learn by example. An ANN is configured for a
specific application, such as pattern recognition or data classification, through
a learning process. Learning in biological systems involves adjustments to the
synaptic connections that exist between the neurones . This is true of ANNs
as well. ANN entails a learning process as described below.[for diagrams see
(Bishop 2006)] The learning method to be used for this experiment is the Su-
pervised learning:

2.2 Supervised Learning

Supervised learning incorporates an external form of teaching, so that each out-
put unit is told what its desired response to input signals should be. During the
learning process global information may be required. Paradigms of supervised
learning include error-correction learning, reinforcement learning and stochastic
learning. An important issue concerning supervised learning is the problem of
error convergence, ie the minimization of error between the desired and com-
puted unit values. The aim is to determine a set of weights which minimizes the
error. In this exercise we will make use of the backpropagation algorithm for
computing the weights and their correction.

2.3 Network Design

The neural network classifier used for this experiment consisted of: three layer
Multilayer Perceptron optimized using the back projection algorithm,two inputs,
one output, ten hidden nodes,a hyperbolic function for the hidden nodes and a
sigmoid function for the output layer.

The behavour of an ANN (Artificial Neural Network) depends on both the
weights and the input-output function (transfer function) that is specified for

the units. We present the network with training examples, which consist of a
100 training patterns of activities from each of the 2 classes, for the input units
together with the desired pattern of activities for the output units (the target
values). We determine how closely the actual output of the network matches the
desired output. We change the weight of each connection so that the network
produces a better approximation of the desired output using the backpropagation
algorithm.(See [3] for the algorithm)

2.4 Neural Network Results

First we plot the distribution of the data from the two classes before classifica-
tion.

Fig. 7. Scattered gaussian data from two classes

The results from applying a Neural Network to the above data is displayed in
fig 8 where the optimal bayes decision region is also shown.The data was divided
using the holdout approach into: training and testing sets. The training data
consisted of 2/3 of the original data shown in fig 8 and the test data consisted
of a 1/3. The results for both sets including the bayes decision error are shown
in the table below.

Error Computation for NN Classifier
Class 0 Class 1 Total error

Hidden units 7
Train Error 0 0.083 0.033
Test Error 0.23 0.067 0.05
Bayes Error 0.02 0.04 0.03

3 Support Vector Machines

In this section we will compare the neural network approach versus the support
vector machines. As covered in class, we found that traditional neural networks
approaches have suffered difficulties with generalization, producing models that

Fig. 8. NN Decision plane and Bayes Optimal Separation

Fig. 9. Neural Network Classification Error on clouded data

Fig. 10. Average Entropy

Fig. 11. The Value of alpha for regularization

Fig. 12. Average Error Comparison between the two decision surfaces shown in fig 8

can over-fit the data. This in theory can be shown that it is a consequence of the
optimization algorithms used for parameter selection and the statistical measures
used to select the best model.On the other hand the formulation surrounding the
support vector machines, ”embodies the Structural Risk Minimization” (SRM)
principle which has been shown to be superior,[4],compared to the Empirical
Risk Minimization (ERM) principle which was used in the formulation of Neural
Networks. SRM minimizes an upper bound on the expected risk, as opposed to
ERM which minimizes the error on the training data, [4]. The mathematical
outline of the above differences is out of the scope of this report.

As already explained in the Neural Networks section above, the problem
covered here is of separating two classes. The objective is to design a classifier
that performs within acceptable tolerance on unseen data, thereby generalizing
well. For data that is linearly separable there could be more than one way to
separate the data but the design of the classifier should an optimal separation
plane that maximizes the margin.

The mathematical formulation of the above is as follows: Since we are con-
sidering the problem of separating the set of training vectors belonging to two
separate classes,

D = {(x1, y1), ..., (xn, yn)}, xεRn, yε{−1, 1} (26)

with hyperplane
< w, x > +b = 0 (27)

An optimal separating hyperplane of the above data should satisfy the con-
straint:

yj [< w, xj > +b] ≥ 1, j = 1, .., n (28)

The distance of the nearest points from the plane is given by,

d(w, b;x) =
| < w, xj > +b|

‖w‖
(29)

The optimal hyperplane can be found by maximizing the margin, g w.r.t
equation 28,

l(w, b) = minxi:yi=−1d(w, b;xi) + minxi:yi=1d(w, b;xi) (30)

= minxi:yi=−1
| < w, xj > +b|

‖w‖
+ minxi:yi=1

| < w, xj > +b|
‖w‖

(31)

=
1

‖w‖
minxi:yi=−1| < w, xj > +b|+ minxi:yi=1| < w, xj > +b| (32)

=
2

‖w‖
(33)

Thus the plane that optimally separates the data is the one that minimizes:

L(w) =
‖w‖2

2
(34)

The solution to this equation is given by saddle points of the Lagrange mul-
tiplier:

L(w, b, α) =
‖w‖2

2
−

n∑
i=1

αi(yj [< w, xj > +b]− 1) (35)

where α are lagrange multipliers. the Lagrangian has to be minimized w.r.t
w, b and maximized w.r.t α≥ 0. The solution to equation 35 can be found in
text,[4],[1],. It is formulated as follows:

α = argminα
1
2

n∑
i=1

n∑
j=1

αiαjyiyj < xi, xj > −
n∑

k=1

αk (36)

with constraints:

αi ≥ 0 i = 1, ..., n
n∑

j=1

αjyj = 0 (37)

For non-linear non-separable data the above procedure is followed but with an
introduction of non-negative variables, ξi ≥ 0 and a penalty function:

Fσ(ξ) =
∑

i

ξσ
i (38)

Equation 28 is modified to:

yj [< w, xj > +b] ≥ 1− ξi, j = 1, .., n (39)

The optimization problem of equation 30 under the new constraints is given by:

L(w, b, α, ξ, β) =
‖w‖2

2
+ C

∑
i

ξ −
n∑

i=1

αi(yi[< wT , xi > +b]− 1 + ξi)−
n∑

j=1

βjξj

(40)
where αiβi are the lagrange multipliers. The Lagrangian in this case should

be minimized w.r.t w, b, x and maximized w.r.t α, β. The solution to this problem
is found to be:

α = argminα
1
2

n∑
i=1

n∑
j=1

αiαjyiyj < xi, xj > −
n∑

k=1

αk (41)

with constraints:

0 ≤ αi ≤ C i = 1, ..., n
n∑

j=1

αjyj = 0 (42)

The solution above is identical as to the one found for the linearly separable
data with the only difference being on the constraints : equation 42, which is
the bounds on the Lagrange multipliers.The parameter C should be determined
as it introduces additional capacity control within the classifier. This is the
parameter that is can directly be linked to the the regularization parameter
in the Neural Network approaches. In our experiment we will use a trial and
error method to obtain this value for a separation that can best regularize the
optimal decision plane. Theoretical methods of finding this parameter are out
of the scope of the experiment. Plots of support vectors and Neural Network
on non-linear non-separable data. These plots where generated from the SVM
toolbox in Matlab that incorporates a comparison of multialgorithms applied to
one dataset. The SPRTool has a tutorial and the full toolbox can be downloaded
from [5]. Another multi-algorithms comparison that was used is the Matlab
classification toolbox,[2]

3.1 support vector machine error table: fig 13

Class 0 Class 1 Total error
Train Error 0 0.033 0.017
Test Error 0.017 0.058 0.037
Bayes Error 0.02 0.04 0.03

Support Vectors 300
Margin 1.7508

Fig. 13. Support Vector Machines on non-linearly separable data

Fig. 14. Support Vector Machines and Neural Network average training error

Fig. 15. Support Vector Machines and Neural Network average test error

Fig. 16. Two class Spiral Data

Fig. 17. Neural Network:BP on Spiral Data

Fig. 18. Support Vector Machine on Spiral Data

Fig. 19. Average Error Comparison for Support Vector Machine and NN on Spiral
Data

4 Spiral Dataset

In this section we consider a dataset set that is very complex for classification
models.

4.1 NN-BP error table on spiral data: fig 17

Class 0 Class 1 Total error
Train Error 0.4245 0.5745 0.4950
Test Error 0.4695 0.5025 0.4863

4.2 SVM error table on spiral data: fig 18

Class 0 Class 1 Total error
Train Error 0.019 0.057 0.037
Test Error 0.033 0.014 0.087

Support Vectors 400
Margin 4.4658

4.3 Summary of Neural Networks and SVMs

The results displayed in figs 8-15 where obtained from classifying the data in fig
7. From fig 14 we notice how the support vector machines constructs a decision

boundary that is very close to the bayes optimal decision surface. The computa-
tion of both SVM training and testing errors as shows in table ?? is very close
to the bayes optimal boundary. In Figures 16- 19 we observe a dataset in which
Neural Networks performs no better that the outcome of tossing a fair coin while
the support vector machines does well in separating the two classes. A significant
advantage noted on the SVMs is that whilst Backpropagation can suffer from
multiple local minima, the solution to an SVM is global and unique. Two more
advantages of SVMs are that that have a simple geometric interpretation and
give a sparse solution. Unlike NNs, the computational complexity of SVMs does
not depend on the dimensionality of the input space. ANNs use empirical risk
minimization, whilst SVMs use structural risk minimization. As in all models
the structure of the data does play a huge role in the classification error and
decision boundary to be constructed by the classifier.

5 Parzen Window Technique

The Parzen technique is considered for a simple case covered in class where px is
a zero mean, unit variance, unit variance normal density. The window function
is described by the equation:

Ψ(u) =
1
2π

exp
−u2

2 (43)

Letting hn = h1√
n
. Thus pn(x) is an average of normal densities centered at the

samples.

pn(x) =
1
n

n∑
i=1

1
hn

Ψ(
x− xi

hn
) (44)

In this experiment the classifier is based on Parzen-window estimation. The
densities are estimated for both classes and test points are classified by the class
category corresponding to the maximum posterior.

5.1 Parzen error table on spiral data

Class 0 Class 1 Total error
h = 0.1

Train Error 0.1571 0.0431 0.0975
Test Error 0.2052 0.0493 0.1281
h = 0.5

Train Error 0.2476 0.4485 0.3450
Test Error 0.2657 0.4404 0.3538

6 K-Nearest Neighbor Technique

A method to remedy the problem of estimating using the ”best” window function
is to let the cell volume be a function of the training data, rather than some

Fig. 20. Spiral 2D Data

Fig. 21. Parzen on Spiral data with h =0.1. See classification error in table below

Fig. 22. Parzen on Spiral data with h =0.5

Fig. 23. Parzen on Spiral data with h =0.8

arbitrary function of the overall number of samples. For example, to estimate
p(x) from n training samples,we can center a cell about x and let it grow until
it captures kn samples, where kn is a specified function of n. These samples
become the k−nearestneighbors of x. If the density if high near x, the cell will
be relatively small, which leads to a good resolution. If the density is too low,
the cell will grow large and will eventually stop once it has entered the regions
of higher density.

pn(x) =
kn

n

Vn
(45)

Combining the above with some of theory covered in [3] we discovered that
the posterior probabilities can be estimated by:

pn(ωi|x) =
pn(x, ωi)∑c

j=1 pn(x, ωj)
(46)

The results that were obtained from using the above methods and the theory
covered in class are shown below.

Fig. 24. K-NN on Spiral Data with k=3

Fig. 25. K-NN on Spiral Data with k=17

6.1 K-NN error table on Spiral data

Class 0 Class 1 Total error
k = 3

Train Error 0.0503 0.0199 0.0350
Test Error 0.0911 0.0451 0.0681

k = 5
Train Error 0.0484 0.028 0.0375
Test Error 0.0823 0.0852 0.0838

k = 17
Train Error 0.057 0.0918 0.075
Test Error 0.1004 0.1084 0.1044

7 Summary on Parzen and K-Nearest Neighbor
Classifiers

The decision regions for Parzen-window classifier (fig21-fig 23) depend upon the
number of data points and also the choice of the window function. As can be
observed: As the window width gets smaller the classification accuracy of the
classifier is increased. This is due to the general characteristic as we discovered
in class that if we know the underlying distribution of the data we can use a
known window function: in this case a gaussian. The density estimation of this
underlying distribution as n gets large does approximates a smooth gaussian
estimate with small error (see error table). Assuming that we did not know

Fig. 26. Average classification error for K-NN vs Parzen Window

that the data was generated from a gaussian density: the Parzen-window has its
limitations as was covered in class. In this case the we then let the cell volume
be a function of the training data. As explained in section this result in the new
estimate (K-NN) based on the number of neighbors surrounding the test point.
The results as shown in fig 24 and the K − NN table above does show how
superior this method is over the Parzen-window estimation.

8 Conclusion

In this report a design of different classifiers was pursued with the goal of com-
paring their performance. The results obtained from all experiments indicate
that the choice one classifier over the other can not be generalized due to the
complexity of either the classifier design or the complexity of the category pat-
terns. However it is realized that if we decide to do a cost effective analysis based
on: classification accuracy, design complexity some classifiers can be chosen over
the other. On all the data that was used in this experiment the K-Nearest Neigh-
bor is identified to accumulate very low classification error on data that is very
complex to separate. The same conclusion is observed from the classification ac-
curacy of the Support Vector Machine (SVM). The SVM is observed to achieve
a misclassification error rate that is close to the optimal Bayes error in two di-
mension. The cost though for choosing the SVM will be the number of support
vectors required to correctly separate the categories. The support vectors are ob-
served to increase with the increase in data complexity e.g spiral data set. The
classification error rate of the Neural Network, Parzen Classifier are observed to
be more than the K-NN and the SVM.

References

1. Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)
2. Yom-Tov: Computer manual in matlab to accompany pattern classification, 2nd

edition (2004) URL: .
3. Hart, D.: Pattern Classification. China Machine Press (2006)
4. Gunn, S.: Support Vector Machines for Classification and Regression. Technical

Report: University of Southampton (1998)
5. Franc, V.: Sprtool support vector machine toolbox (2008) URL:

http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html.

