- 1. Let (X, d) be a metric space.
 - (a) Let $K \subseteq X, C \subseteq X$ with K compact, C closed and $K \cap C = \emptyset$. Show there exists and open G in X with $K \subseteq G \subseteq C^c$.
 - (b) Suppose now that closed balls in X are compact, (for all $x \in X, r > 0$, we suppose $\{y : |x y| \le r\}$ is compact.) Using the notation above, show there exists an open $G \subseteq X$ such that \overline{G} is compact and $K \subseteq G \subseteq \overline{G} \subseteq C^c$
 - (c) For all $x \in X, A \subseteq X$ define

$$d(x, A) = \inf\{d(x, a) : a \in A\}$$

and show that if K is compact and nonempty in X, and $x \in X$ there is a $k \in K$ with d(x, K) = d(x, k).

If $X = \mathbb{R}^n$ with the usual (Euclidean metric) show the above result holds if we replace K with any nonempty closed set.