Midterm Examination 1 ECE 301

Division 1, Fall 2008 Instructor: Prof. Mimi Boutin

Instructions:

Name:

- 1. Wait for the "BEGIN" signal before opening this booklet. In the meantime, read the instructions below and fill out the requested info.
- 2. You have 50 minutes to complete the 5 questions contained in this exam. When the end of the exam is announced, you must stop writing immediately. Anyone caught writing after the exam is over will get a grade of zero.
- 3. This booklet contains 9 pages. The last three pages contain a table of formulas and properties. You may tear out these three pages **once the exam begins**.
- 4. This is a closed book exam. The use of calculators is prohibited. Cell phones, pagers, and all other electronic communication device are strictly forbidden. Ipods and PDAs are not allowed either.

Email:	
Signature:	
Itemized Scores	
Problem 1:	
Problem 2:	
Problem 3:	
Problem 4:	
Problem 5:	
Total:	
	•

(10 pts) 1. Is the signal

$$x(t) = \sum_{k=-\infty}^{\infty} \frac{1}{(t+2k)^2 + 1}$$

periodic? Answer yes/no and justify your answer mathematically.

(10 pts) 2. Is the system defined by the equation

$$y(t) = x(1-t)$$

time-invariant? Answer yes/no, and justify your answer mathematically.

(15 pts) 3. An LTI system has unit impulse response h[n] = u[-n]. Compute the system's response to the input $x[n] = 2^n u[-n]$. (Simplify your answer until all \sum signs disappear.)

(15 pts) 4. Compute the coefficients a_k of the Fourier series of the signal x(t) periodic with period T=4 defined by

$$x(t) = \begin{cases} 0, & -2 < t < -1 \\ 1, & -1 \le t \le 1 \\ 0, & 1 < t \le 2 \end{cases}.$$

(Simplify your answer as much as possible.)

5. An LTI system has unit impulse response h[n]=u[n]-u[n-2]. (5 pts) a) Compute the system's function H(z).

(10 pts) b) Use your answer in a) to compute the system's response to the input $x[n] = cos(\pi n)$. (Simplify your answer as much as possible.)

Facts and Formulas

1 CT Signal Energy and Power

$$E_{\infty} = \int_{-\infty}^{\infty} |x(t)|^2 dt \tag{1}$$

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \tag{2}$$

2 Fourier Series of CT Periodic Signals with period T

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\left(\frac{2\pi}{T}\right)t}$$
(3)

$$a_k = \frac{1}{T} \int_0^T x(t)e^{-jk\left(\frac{2\pi}{T}\right)t}dt \tag{4}$$

3 Properties of CT Fourier Series

Let x(t) be a periodic signal with fundamental period T and fundamental frequency ω_0 . Let y(t) be another periodic signal with the same fundamental period T and fundamental frequency ω_0 . Denote by a_k and b_k the Fourier series cofficients of x(t) and y(t) respectively.

$$Signal \qquad FT$$
 Linearity: $\alpha x(t) + \beta y(t) \qquad \alpha a_k + \beta b_k \qquad (5)$ Time Shifting: $x(t-t_0) \qquad e^{-jk\omega_0t_0}a_k \qquad (6)$ Conjugation: $x^*(t) \qquad a_{-k}^* \qquad (7)$ $x(t)$ real and even a_k real and even a_k pure imaginary and odd $x(t)$ real and odd $x(t)$

Parseval's Relation:
$$\frac{1}{T} \int_{-\infty}^{\infty} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$
 (10)

4 DT Signal Energy and Power

$$E_{\infty} = \sum_{n=-\infty}^{\infty} |x[n]|^2 \tag{11}$$

$$P_{\infty} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$
 (12)

5 Fourier Series of DT Periodic Signals with period N

$$x[n] = \sum_{k=0}^{N-1} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$
(13)

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\left(\frac{2\pi}{N}\right)n}$$

$$\tag{14}$$

6 Properties of DT Fourier Series

Let x[n] be a periodic signal with fundamental period N and fundamental frequency ω_0 . Let y[n] be another periodic signal with the same fundamental period N and fundamental frequency ω_0 . Denote by a_k and b_k the Fourier series cofficients of x(t) and y(t) respectively.

Linearity:
$$\alpha x[n] + \beta y[n]$$
 $\alpha a_k + \beta b_k$ (15)

Time Shifting: $x[n-n_0]$ $e^{-jk\omega_0 n_0}a_k$ (16)

Conjugation: $x^*[n]$ a_{-k}^* (17)

 $x[n]$ real and even a_k real and even (18)

 $x[n]$ real and odd a_k pure imaginary and odd (19)

Parseval's Relation:
$$\frac{1}{N} \sum_{n=0}^{N-1} |x(t)|^2 dt = \sum_{k=0}^{N-1} |a_k|^2$$
 (20)

7 Properties of LTI systems

- LTI systems commute.
- The response of an LTI system with unit impulse response h to a signal x is the same as the response of an LTI system with unit impulse response x to the signal h.
- An LTI system consisting of a cascade of k LTI systems with unit impulse responses h_1, h_2, \ldots, h_k respectively, is the same as an LTI system with unit impulse response $h_1 * h_2 * \ldots * h_k$.
- The response of a CT LTI system with unit impulse response h(t) to the signal e^{st} is $H(s)e^{st}$ where $H(s)=\int_{-\infty}^{\infty}h(\tau)e^{-s\tau}d\tau$.
- The response of a DT LTI system with unit impulse response h[n] to the signal z^n is $H(z)z^n$ where $H(z)=\sum_{k=-\infty}^\infty h[k]z^{-k}$.