
Question 1 
 
 

INTRODUCTION : The Fisher cost function is given by ( )
T

b
T

w

w S w
J w

w S w
= . The value of 

w which optimizes this cost function is given by  1
0 1 2( )ww S m m−= − .  

In this experiment, we modify the Fisher cost function by replacing the within class 
scatter  matrix wS  by the identity matrix, in the Fisher cost function. This implies that the 

value of w which optimizes the modified Fisher cost function is given by 1 2( )mw m m= − . 

 
AIM : We aim to classify different data sets by these two classifiers – One using the 
Fisher cost function, and the other, using the modified Fisher cost function; and compare 
their performance. 
 
METHOD : 0w  - solution obtained by optimizing the correct Fisher cost function. 

mw - solution obtained by optimizing the modified Fisher cost function. 

 
We used  synthetic data for all our experiments, since it gave great flexibility in 
evaluating the performance of our classifiers for different data sets. Basically, since we 
wanted to see, whether the classification obtained by mw , can ever be better than that 

obtained by 0w , in some cases, we had to force the data to be such, that it gives a better 

performance using the modified Fisher cost function. 
.  
We wrote two programs in Matlab for each of the classifiers, which  

1) Seperate the two data sets by finding the optimum w  
2) Draw the projections of the data on the projection plane 
3) Draw the separation hyperplane. 
4) Evaluate the performance of classification. 

 
Performance was measured by projection the data onto the plane containing w, and 
examining whether the separation hyperplane separates the data in the two classes 
satisfactorily. 
 
The algorithm for drawing the plots are as follows:  
  

1)      Find w vector from the formulae. 
2)      Find the offset of the separation hyper surface from origin w0 = -m.w 

where m is the global mean of the data.  
3)      Find a perpendicular to w. For 2 D if w =[w(1) w(2)] we can choose a 

perpendicular like [-w(2) w(1)] and use this to draw a line through w0. 
4)      For the 3D case if w=[w(1) w(2) w(3)] find a perpendicular direction like wn= 

[-w(2) w(1) 0].  



5)      Project the data vectors on  wn and subtract data-projection on wn to find the 
the projection on plane containing w. 

6)      To draw the hypersurface in 3-D compute 
                              Z=(-w(1).x– w(2).y + w0)/w(3) 
  
7) Use MATLAB mesh(z) command to draw the plane. 

 
 
EXPERIMENTS: 
 
We performed experiments on data by varying the amount of separation, and by varying 
the dimension. In this section, we have listed the various experiments conducted, the 
plots of the data along with the separation hyperplane and the projection plane, for both 
the methods, and their respective performance measures. 
 
 

2-D Data 
 
1) Very well separated data   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Data 1 Data 2 

Mean [1 2 ] [-2    -4 ] 

Variance 
0.4 0

0 0.4

 
 
 

 
0.4 0

0 0.4

 
 
 

 

 Fisher Modified Fisher 

Error % 0 0 



                           
 
Figure (i) showing the projections and separation hyper plane for the fisher discriminant 
and for the modified fisher method respectively. The pink and black are class I and class 
2 data and the red and green are the projections of the data. The blue line is the 
separation line 
 
Since the data is very well separated, both the methods classify the data very well, and 
have a zero error.  
 
 
 
 
 
2) Separated data which leads to error. 
 
In this experiment, we purposely generated data, for which the Fisher method will 
perform better than the modified Fisher.  
 
  
 
 
 
 
 
 
 
 
  
 
 

 Data 1 Data 2 

Mean [5  6 ] [2    6 ] 

Variance 
1 0

0 1

 
 
 

 
0.1 0

0 0.1

 
 
 

 

 Fisher Modified Fisher 

Error % 0 3.85 



       
Figure (ii) showing the projections and separation hyper plane for the fisher discriminant 
and for the modified fisher method respectively. The pink and black are class I and class 
2 data and the red and green are the projections of the data. The blue line is the 
separation line 
 
 
Modified Fisher method performs worse than Fisher in this case, since the separation 
plane it draws is perpendicular to the difference of the means, i.e. it only tries to 
maximize the separation of the means of the projected data. On the other hand, the Fisher 
method not only tries to maximize the separation of the means of the projected data, but 
also minimizes the variance, and hence, in this case, it gives a better result.  
 
3) Overlapping data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Data 1 Data 2 

Mean ([2 8] 

0.08 0 0

0 0.08 0

0 0 0.08

 
 
 
 
 

 

Variance 
8.48 0.05

0.05 7.6

− 
 − 

 
8.64 0.15

0.15 8.53

 
 
 

 

 Fisher Modified Fisher 

Error % 16.75% 16.85 % 



 
 
Figure (iii) showing the projections and separation hyper plane for the fisher 
discriminant and for the modified fisher method respectively. The pink and black are 
class I and class 2 data and the red and green are the projections of the data. The blue 
line is the separation line 
 
 
We observe, that the Fisher method again gives a lower error. But the modified Fisher 
method also gives a comparable result in this case because, for this choice of data, the w 
vector obtained by the Fisher method is very close to w1-w2. 
 
4) Non overlapping data (which gives better performance with modified Fisher) 
 
The results of all the experiments so far lead us into believing that Fisher method is better 
than Modified Fisher. The motivation of this experiment was to investigate, whether this 
is always true. Keeping in mind that the Fisher method tries to maximize the seperation 
of the means and minimize the variance of the projected data, while the modified Fisher 
method only maximized the separation of the means, we generated a data set, in which, 
trying to minimize the variance of the projected data, will lead to a wrong separation 
surface.  
 
We generated data, which has a huge variance in the x direction, and very less variance in 
the y direction. Also, we placed the means on the x-axis. Following is a diagram, 
showing the shape of the data set.  
 

 
Fig(iv) Showing the data and its projection (enlarged view for the MODIFIED fisher’s 
method) 
 
 
 



We can intuitively see, that modified Fisher will draw a separation line which is 
perpendicular to the x-axis. On the other hand, in order to reduce the variance, the Fisher 
method will draw a separation which is slightly tilted, and hence lead to misclassification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure (v) showing the projections and separation hyper plane for the fisher discriminant 
and for the modified fisher method respectively. The pink and black are class I and class 
2 data and the red and green are the projections of the data. The blue line is the 
separation line 
 

 Data 1 Data 2 

Mean [25    0] [-25   0]  

Variance 
1026.9 6.3

6.3 16.9

 
 
 

 
1027.1 4.4

4.4 17.1

 
 
 

 

 Fisher Modified Fisher 

Error % 16.025 0 



 
 
Figure (vi) showing the projections and separation hyper plane for the modified fisher 
method respectively. The pink and black are class I and class 2 data and the red and 
green are the projections of the data. The blue line is the separation line 
 
 
We observe that, Fisher method does not always perform better than the modified Fisher 
method. But since the probability of coming across such data in practice is pretty small, 
and considering the success of the Fisher method in the rest of the cases, we can conclude 
that Fisher method of classification does much better than the Modified Fisher method.  
 
 
 

3-D data 
 

 
5) Well separated data in which both yield similar results 

 
 
 
 
 
 
 
 
 
 

 Data 1 Data 2 

Mean [ 1.0285    1.9437   3.0294 ] [ -0.9586   -2.0054   -2.9299 ] 

Variance 

1 0 0

0 1 0

0 0 1

 
 
 
 
 

 

1 0 0

0 1 0

0 0 1

 
 
 
 
 

 



 
 
 
 
 
 

           
 
Figure (vii) showing 2 classes , the offset projection and the separating plane for both the 

methods.  
 
Since the data is very well separated, both the methods classify the data very well, and 
have a zero error. This result is same as that obtained in 2-D, as expected. 
 
 

6) Overlapping data  
 
 
 

 
 
 
 
 
 

 Fisher Modified Fisher 

Error % 0 0 

 Data 1 Data 2 

Mean [0.9912    2.0148    3.0280 ] [-0.9889    0.9819    1.9961 ] 

Variance 

0.8 0.2 0.1

0.2 0.5 0.4

0.1 0.4 0.9

 
 
 
 
 

 

0.8 0.2 0.1

0.2 0.5 0.4

0.1 0.4 0.9

 
 
 
 
 

 

 Fisher Modified Fisher 

Error % 10.65 11.85 



 
 

Figure (viii) showing 2 classes in pink and black , the offset projections in red and green 
and the separating plane 

 
We observe, that the Fisher method performs only marginally better than the modified 
Fisher method. This result is also the same as that obtained in 2-D.  
 
 

7) 3D Nonoverlapping in which Fisher does better 
 
 
 
 

 
 
 
 
 
 
 
 

 Data 1 Data 2 

Mean [ 0 0 0 ] [ 2 2 0 ] 

Variance 

7 0 0

0 0.05 0

0 0 0.08

 
 
 
 
 

 

0.08 0 0

0 0.08 0

0 0 0.08

 
 
 
 
 

 

 Fisher Modified Fisher 

Error % 0 11 



  
 
 
Figure (ix) showing 2 classes in pink and black , the offset projections in red and green 

and the separating plane using the normal fisher method 
 
 
Modified Fisher method performs worse than Fisher in this case, since the separation 
plane it draws is perpendicular to the difference of the means, i. e. it only tries to 
maximize the separation of the means of the projected data. On the other hand, the Fisher 
method not only tries to maximize the separation of the means of the projected data, but 
also minimized the variance, and hence, in this case, it gives a correct separation plane. 
 
 
CONCLUSION 
 
We saw that in most of the cases for which we experimented, the Fisher method 
performed better than the modified Fisher method.  
 
But we also looked at a case (Experiment 4), where the modified Fisher’s method 
outperforms Fisher’s method, and hence, we can’t say that Fisher is always better than 
modified Fisher. But considering the fact that it is very unlikely to come across such data 
in practice very frequently, we can safely say that the Fisher method can be the better 
choice among the two. 
 
 
 
 

 
 
 
 
 
 



Matlab Code 
 
%Fisher Discriminant function for 2 and 3D data. X1  , X2 are data 
vectors  
%with each row being a feature vector . d is the di mesnsion size and k 
is  
%the offset for plotting in 3-D  
  
function  fisher(X1,X2,d,k,rt)  
  
%variables to hold size of input data  
[m n]=size(X1);  
m1=zeros(1,d);  
m2=zeros(1,d);  
  
%Checking for data's dimensionality  
if (d==3)  
plot3(X1(:,1),X1(:,2),X1(:,3), 'r+:' );  
hold on 
plot3(X2(:,1),X2(:,2),X2(:,3), 'g*:' );  
end  
  
if (d==2)  
plot(X1(:,1),X1(:,2), 'm+' );  
hold on 
plot(X2(:,1),X2(:,2), 'k*' );  
end  
  
  
m1=mean(X1)  
m2=mean(X2)  
X=[X1;X2];  
  
%glm stores the global mean  
glm=mean(X)  
S1=cov(X1)  
S2=cov(X2)  
SW=S1+S2; 
  
%Compute Weight function  
w=(SW^-1)*(m1-m2)';  
  
if (d==3)  
plot3(w(1)/(sqrt(w(1)^2 + w(2)^2 + w(3)^2)),w(2)/(s qrt(w(1)^2 + w(2)^2 
+ w(3)^2)),w(3)/(sqrt(w(1)^2 + w(2)^2 + w(3)^2)), 'X' );  
end  
if (d==2)  
    plot(w(1)/(sqrt(w(1)^2 + w(2)^2)),w(2)/(sqrt(w( 1)^2 + 
w(2)^2)), 'X' );  
end  
magw=sqrt(w'*w);  
vecw=w/magw;  
  
  



if (d==3)  
vecw2=[-vecw(2) vecw(1) 0];  
mag2=sqrt(vecw2*vecw2');  
vecw2=vecw2/mag2;  
end  
  
if (d==3)  
for  i=1:m  
    vec1(i,:)=X1(i,:)-(X1(i,:)*vecw2')*vecw2;  
    vec2(i,:)=X2(i,:)-(X2(i,:)*vecw2')*vecw2;  
end  
end  
  
%variables used for plotting the plane in 3-D  
xmin=min(X(:,1));  
xmax=max(X(:,1));  
ymin=min(X(:,2));  
ymax=max(X(:,2));  
  
%plots the plane in between classes  
if (d==3)  
    x=[xmin:0.1:xmax];  
    y=[ymin:0.1:ymax];  
    for  i=1:length(x)  
        for  j=1:length(y)  
    z(i,j)=(-w(1)*x(i)-w(2)*y(j) +glm*w)/w(3);  
        end  
    end  
[p q]=size(z);  
mesh(y,x,z);  
end  
  
%Computes number of misclassified points  
if (d==2)  
for  i=1:m  
    vec1(i,:)=(X1(i,:)*vecw)*vecw';  
    vec2(i,:)=(X2(i,:)*vecw)*vecw';  
end  
end  
misc1=0;  
misc2=0;  
if (d==3)  
    for  i=1:m  
        t1(i,:)=vec1(i,:)+k*vecw2;  
        t2(i,:)=vec2(i,:)+k*vecw2;  
        if (X1(i,:)*w - glm*w < 0)  
            misc1=misc1+1;  
        end  
        if (X2(i,:)*w - glm*w >0)  
            misc2=misc2+1;  
        end  
    end  
end  
  
if (d==3)  
plot3(t1(:,1),t1(:,2),t1(:,3), '+' , 'Color' , 'b' );  



plot3(t2(:,1),t2(:,2),t2(:,3), 'x' , 'Color' , 'g' );  
end  
  
%Compute accuracy and plot for 2-D  
misc1=0;  
misc2=0;  
w0=glm*vecw  
r=w0*vecw';  
if (d==2)  
    plot(r(1),r(2), 'X' );  
    line([(r(1)-k*vecw(2)),(r(1)+rt*vecw(2))],[(r(2 )+k*vecw(1)),(r(2)-
rt*vecw(1))]);  
    plot(vec1(:,1),vec1(:,2), 'b+:' );  
    plot(vec2(:,1),vec2(:,2), 'gx:' );   
    for  i=1:m  
        if (X1(i,:)*w - glm*w < 0)  
            misc1=misc1+1;  
        end  
        if (X2(i,:)*w - glm*w >0)  
            misc2=misc2+1;  
        end  
    end  
    accuracy=100*(1-(misc1+misc2)/(2*m))  
end  
 
 



Question 2 
 

 
 
AIM: In this experiment, our aim is to perform a comparative analysis of Neural 
Networks and Support Vector Machines in terms of classification performance.  
 
 
METHOD  : We have made use of in built tool boxes in Matlab® to perform our 
experiments. A brief description of the toolboxes can be found at the end of this section. 
 
 
 

EXPERIMENTS : 
 

In all our experiments, we use 1000 points for each of the classes and vary the amount of 
training and test data in the proportion 10-90,35-65,65-35 and 90-10 respectively.  
 
For SVM, we have used two different kernels – the radial basis kernel, and polynomial 
kernel, and looked at their relative performances.  
 
We have used the MLP neural network trained using Levenberg-Marwuardt algorithm. 
We have also experimented by changing the number of hidden neurons in some cases. 
 
 

2-D data 
 
2-D overlapping data 
 
 

 
 
 
 
 
 
 
 

 Data 1 Data 2 

Mean [1  1] [4  3]  

Variance 
0.8 0.07

0.07 0.5

 
 
 

 
1 0.5

0.5 1

 
 
 

 



 
 
Figure (i) Training data and support vectors for different proportions of training data 
using radial basis function 
 
 
 
 

# of Training Samples 100 350 650 900 

Accuracy Neural Network 
(10 hidden neurons) 

93.72 95.42 96.85 94.83 

Accuracy RBF 
Kernel 

94.9444 94.8462 95.4286 96 

Accuracy 2nd degree poly. 
kernel 

94.6667 94.7692 94.1429 94.5000 

Accuracy 3rd degree poly. 
kernel 

94.5556 
 

94.6154 
 

94.2857 95 

 
 
In this case, we have chosen data which has a small amount of overlap. We observe that 
SVM using RBF kernel and polynomial kernel have a similar performance in this case.  



With an increase in the amount of training data, we observe that the  performance of 
SVM stays almost the same. 
 
As opposed to this, with neural networks, we observe that with increase in the amount of 
training data from 10% to 65%, the accuracy of classification improves; but it drops 
suddenly in the end, when we use 90% of the data as training data. This trend is found in 
all our experiments, and this proves that the performance of neural networks drops due to 
over fitting. 
 
If we look at the relative performance of SVM and neural networks, we can see that  
there is an insignificant difference between their performances in this case. But the time 
taken in case of neural networks was more than that of SVM. 
Also, if we increase the number of hidden neurons in the neural network, their 
performance improves, but it comes at an expense of increase in the operating time. 
  
 
 
 
 
 
 
 
2D more overlapping data with closer means 
 
 
 
 
 
 
 
 
 
 
 

 Data 1 Data 2 

Mean [1  1] [2  2]  

Variance 
0.8 0.07

0.07 0.5

 
 
 

 
0.7 0.21

0.21 0.56

 
 
 

 



 
 
Figure (ii) Training data and support vectors for different proportions of training data 
using radial basis function 
 
 
 
 
 
 

# of Training Samples 100 350 650 900 

Accuracy Neural Network 76.67 77.61 80.14 50.0 
Accuracy RBF 

Kernel 
74.7222 75.0769 75.7143 78 

Accuracy 2nd degree poly. 
kernel 

74.8333 74.6923    73.7143 
 

77 

Accuracy 2nd degree poly. 
kernel 

74.0556 
 

73.5385 NC NC 

 
 



In this experiment we wanted to see what happens when the amount of overlap in the data 
is increased. We observed that the performance of both the networks drops significantly 
in this case.  
With lesser amount of training, we observe that neural networks perform better than 
SVM. But as we increase the amount of training, the performance of SVM improves and 
is pretty close to that of the neural network. Since SVM takes much lower time than NN, 
we can say that their relative performances in this case are almost equivalent. 
 
 

3D data  
 

 
Small amount of Overlap 
 
 

 
 
 
 
 
 
 
 
 

 

# of Training Samples 100 350 650 900 

Accuracy Neural Network 85.55 87.38 88.0 86.32 
Accuracy SVM 
(RBF Kernel) 

88.3889 
 

89.3077 89.2857 92.5000 

 
SVM does marginally better than NN in this case.  
Overtraining of NN is also demonstrated here. 
 
3D more overlapping by just increasing the variance. 
 

 
 
 
 
 
 
 
 
 

 

 Data 1 Data 2 

Mean [ 1 1 1 ] [ 3 3 3  ] 

Variance              

1 0 0

0 2 0

0 0 5

 
 
 
 
 

 

1 0 0

0 2 0

0 0 5

 
 
 
 
 

 

 Data 1 Data 2 

Mean [ 1 1 1 ] [ 3 3 3  ] 

Variance 

1.5 0 0

0 2.5 0

0 0 5.5

 
 
 
 
 

 

1 0 0

0 2 0

0 0 5

 
 
 
 
 

 



# of Training Samples 100 350 650 900 

Accuracy  
(RBF Kernel) 

87.7778 
 

88.8462 88.2857 87.5000 

 
 
In this case, the data have the same means as that of the previous experiment, but the 
variance of one of the data sets is increased. And we can clearly see that there is a 
decrease in the accuracy of the SVM in this case. Thus, we conclude, that by increasing 
the amount of overlap, the performance of the SVM drops. 
 
3-D more overlapping with shifted mean 
 
 

 
 
 
 
 
 
 
 
 

 

# of Training Samples 100 350 650 900 

Accuracy Neural Network 68.16 69.31 72.0 71.33 
Accuracy  

(RBF Kernel) 
   72.2222 
 

70.8462 72.1429 74.5000 

 
In this case, we increased the amount of overlap by bringing the means closer together. 
 
We observe that as the amount of overlap increases, the performance of both the 
classifiers reduces significantly. But in all the cases, the performance of SVM is only 
marginally better than the NN. But this is not enough to say that SVM is “better” than 
NNs. We can increase the number of hidden layers or the number of epochs, and in that 
case, the performance of the NN may improve, but at the expense of the increased time. 
 
Thus, we can say that if trained appropriately, NNs can achieve a good accuracy, but 
SVMs can do as well, if not better, and in a much lesser amount of time. 
 
 
 
 
 
 
 

 Data 1 Data 2 

Mean [ 2 2 2 ] [ 1 1 1 ] 

Variance              

1 0 0

0 2 0

0 0 5

 
 
 
 
 

 

1 0 0

0 2 0

0 0 5

 
 
 
 
 

 



SPIRAL DATA 
 
The two spiral problem is one of the most demanding classification problems [1] and [2], 
and we wanted to see the relative performance of SVMs and ANNs for this problem. 
The data points of the two classes form two interlocking spirals, going about the origin.  

The equations of the two spirals are r θ= ± . 
The code used to generate this kind of data, and for experimentation is attached in the end 
of this section.  
 
 

 
Figure (iii) Training data and support vectors for different proportions of training data 
using radial basis function 
 
 

# of Training Samples 100 350 650 900 

Accuracy Neural Network 41.61 45.07 30.71 33.0 
Accuracy RBF 

Kernel 
47.8889 48.1538 20.8571 2.5000 

 



In this case, we trained the SVM and NN, using the first 100, 350, 650 and 900 points, 
respectively. We observe that the results obtained are very poor for both NN and SVM. 
This can be attributed to the fact that, since we used the initial points for training, the 
separation surfaces were good enough only to separate the training data. And since the 
test data is not at all correlated with the training data, both the networks performed very 
poorly. 
 
We can see this by observing the 4th figure, in which the accuracy is only 2.5%. This is 
because, almost all the testing data which is to appear for the first class will fall in the 
region of the second class, and vice versa. 
 
Hence, it is not a good idea to draw any conclusions about the classification performance 
of the networks, by using this experiment, since, essentially, we are asking it to predict 
the data, rather than classify.  
 
And hence, in our next experiments, we sampled the data uniformly, and gave it for 
testing, in which case, the results will be much more meaningful, and will give the true 
performance in terms of classification.   
 
 
Sampled Spiral 
 
 
For this experiment, we chose the spiral to have a maximum angle of 4*pi. And we also 
varied the kernel function of the SVM, and the number of hidden neurons in the Neural 
Network. 

 
 
 
 
 

Fraction of samples 1/10 1/20 

Accuracy NN 25 hidden 
neurons 

99.94 99.94 

Accuracy Neural Network 
10 hidden neurons 

82.77 75.47 

Accuracy with 8th degree 
poly Kernel 

99 94.2105 

Accuracy with  
Rbf Kernel 

55.77 56.63 

 



 
Figure (iv) Training data and support vectors for different proportions of training data 
using 8th order polynomial function using every 20th and 10th 
sample.

 
Figure (v) Training data and support vectors for different proportions of training data 
using radial basis  function using every 10th and 20th sample. 
 
 
 
Comparison between kernels of SVM : We can clearly see that using a polynomial 
kernel of 8th degree gives a much better performance than that obtained by using a RBF 
kernel. We also tried using polynomial kernels of lesser degree, and found that below 7th 
degree, the kernels perform very poorly. For 7th degree polynomial kernel, the  accuracy 
was found to be 98.77%. Since the 7th and 8th degree kernels have a very high degree of 
freedom, the results are found to be really impressive, even in the case of spiral data. 
Also, we found that as we increase the # of rotations of the spiral, we will need a 
polynomial kernel with higher and higher degree.  
 
Comparison between NN and SVM : We can see that SVM with an 8th degree 
polynomial used as kernel gives an accuracy of 99% when trained with every 10th data 
point. And this is very good, if we compare it with the performance of the NN with 10 



hidden neurons. But if we increase the number of hidden neurons in the neural network, 
we can obtain an accuracy of almost 100%, even if we train it with half the number of 
points, which is impressive. But this comes at the expense of increased operation time. 
 
Thus, we can not say that one method is better than the other, but the choice of method 
depends on the type of application. If the application demands low time complexity, then 
SVM is certainly a better option. But if it demands very high accuracy, and there is no 
time constraint, then NNs are better. In the rest of the cases, the decision has to be made, 
based on what we are willing to sacrifice, accuracy or time. 
 
We also performed an experiment by reducing the angle of the spiral to 2.5*pi. The 
motivation of this experiment was to see whether the RBF kernel always performs badly. 
In order to test this, we reduced the complexity of the spiral classification problem, by 
reducing the angle of the spiral to 2.5*pi. 
 
 
 

 
Figure(vi) Training data and support vectors for different proportions of training data 
using radial basis function.. 
 



 

Fraction of Samples 1/10 1/5 1/2 

ANN with 25 hidden 
neurons 

99.94 99.94 99.94 

 Accuracy of ANN with 10 
hidden neurons 

66.89 76.23 81.33 

Accuracy RBF 
Kernel 

86.5000 95.2500 96.5000 

 
 
We can see that the accuracy of the RBF network has improved significantly in this case, 
as compared to the previous case, and is actually better than the accuracy of the NN with 
10 hidden neurons. But as we observed in the previous case, we can always optimize the 
number of neurons in the hidden layer, and achieve a very good performance with Neural 
Networks. 
 
 
 
 
 
CONCLUSION 
 
We performed classification by using both SVM and neural networks, for different types 
of data, with varying amounts of overlaps, and also with spiral data, which is considered 
to the most demanding classification problem. Based on our results, it is difficult to say 
that one is better than the other. But one thing, which we can surely say, is that, although 
Neural Networks give a highly accurate performance, they take a lot of time. Also, they 
face the problem of overfitting, and so, the amount of training has to be optimized to 
avoid this problem. On the other hand, SVMs take very less time for training, and the 
performance does not seem to vary a lot with the amount of training. Also, unlike ANNs, 
the computational complexity of SVMs does not depend on the dimensionality of the 
input space. 
 
In essence, the choice of method depends on the type of application. If the application 
demands low time complexity, then SVM is certainly a better option. But if it demands 
very high accuracy, and there is no time constraint, then NNs are better. In the rest of the 
cases, the decision has to be made, based on what we are willing to sacrifice, accuracy or 
time. 
 
 
 
 
 
 
 
 



 
SVM tool in Matlab®.  
 
Commands used in the experiments:  
 

1) svmtrain 
 

svmtrain takes as input the test vectors, the group they belong to, the kernel function , the 
order of the polynomial in the case of a polynomial kernel and a option to show plot. The 
show-plot option plots the training data labeling the classes and indicates the support 
vectors chosen. It also draws the separation hypersurface. The function returns all these 
data as a structure variable. This can be used in classification. 
There are several options for Kernel Function and we have experimented with the Radial 
Basis function and the polynomial kernel of varying orders. 
 
2) svmclassify 
 
This command takes the above returned structure variable and the matrix of test vectors 
and classifies them as either class 1 or class 2. It returns the classes of all the test vectors 
in the order in which they appear. We can use this returned information to check the 
accuracy of the classifier.  
 
NNtool in Matlab® 
 
This tool is a Graphical User Interface Tool. The user can specify several parameters of 
the neural network such as the activation function, the initial weights, the training and test 
data, the number of epochs and the target data for the giving training set.  
 
The tool expects the user to give the training data in the form of a d X n matrix where d is 
dimensionality of the data and n is the number of training vectors. It expects “target” data 
in the form of a 1 X n vector each entry specifying the class of the corresponding training 
sample. Once this data is given we can “create” the network by specifying the following:  
 
a) Type of network  
b) Training function  
c) Adaption Learning Function 
d) Number of layers  
e) Number of neurons per layer 
f) Transfer Function for neurons. 
 
Following are some snapshots of the tool 
 



 
 

 
 
 



 
 
 
 
 

 
MATLAB Code for spiral data generation and sampling 

 
Equation of the spiral: 
 

 r= ± θ  
 

 
clear all  
clc  
  
t=linspace(1,4*pi,100)';  
r1=sqrt(t);  
r2=-sqrt(t);  
  
for  i=1:length(t)  
x1(i)=r1(i)*cos(t(i));  
y1(i)=r1(i)*sin(t(i));  
x2(i)=r2(i)*cos(t(i));  
y2(i)=r2(i)*sin(t(i));  
end  
  
X1=[x1' y1']';  
X2=[x2' y2']';  
  
  
j=1;  
k=1;  
for  i=1:length(X1)  
   if (mod(i,10)==0)  
       X1_new(:,j)=X1(:,i);  
       X2_new(:,j)=X2(:,i);  
       j=j+1;  
   else  



       X11_new(:,k)=X1(:,i);  
       X21_new(:,k)=X2(:,i);  
       k=k+1;  
   end  
end  
  
Xtrain=[X1_new X2_new]';  
Xtest=[X11_new X21_new]';  
  
ntrain=length(X1_new);  
ntest=100-ntrain;  
  
  
class = [ones(1,ntrain) 1+ones(1,ntrain)]';  
q = [ones(1,ntest) 1+ones(1,ntest)]';  
  
  
s=svmtrain(Xtrain,class, 'Kernel_function' , 'polynomial' , 'polyorder' ,8, 's
howplot' ,1);  
 
  
p=svmclassify(s,Xtest)  
  
  
miscl=sum(abs(p-q));  
accuracy=100-100*miscl/(2*ntest)  
 



Question 3 
 

Parzen Window, K Nearest Neighbors and Nearest Neighbors technique 
 
AIM : In this experiment, we use three non-parametric techniques, namely, Parzen 
Window, K Nearest Neighbours, and Nearest Neighbour for classification of data, and 
compare their performances. 
 
We used the same data as was used for Question 2. 
 

1) Parzen Window Technique 
 
We developed Matlab code for Parzen Window technique for two types of window 
functions – Gaussian and Rectangular window functions. To resolve ties, we made use of 
the priors of the data. In the data that we used, we had the same number of points in both 
the classes, and hence the priors were 50%. In the code, we used a random number 
generator to generate 1 or 2, and assigned the test point to class 1 or class 2 accordingly. 
 
EXPERIMENTS  
 
We performed experiments for data by varying the amount of separation, and by varying 
the window size, for two types of window functions. Also, we varied the amount of data 
available for estimating the density function from 10% to 90%. In this section, we have 
listed the various experiments conducted, the plots of the data along with the 
misclassified test points, in red crosses, for both the methods, and their respective 
performance measures. 
 
1) 2-D slightly overlapping data 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Class I Class II 

Mean [ 1 1 ] [ 4 3 ] 

Covariance 
0.8 0.07

0.07 0.5

 
 
 

 
1 0.5

0.5 1

 
 
 

 

10 35 65 90    %training 
H G R G R G R G R 

0.15 95.83 94.05 95.77 95.0 96.14 95.14 95.0 94.5 

0.30 95.89 90.06 96.07 94.38 96.29 94.00 95.0 93.5 

0.50 95.94 78.17 96.0 88.39 95.71 91.42 95.5 93.0 

0.75 95.78 62.28 95.85 76.31 95.14 82.29 94.0 84.0 
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Figure (i) showing the plots of Parzen Window technique using h=0.75.The left half 
contains results for classification using Gaussian window and the right half contains 
rectangular window 

 
 
 



 
 
 
 
From the tables and figures we can observe that the performanceof Parzen Window 
technique using Gaussian window function is a smoother estimate of the probability at a 
given point since it takes into account all the data points in the set by giving smaller 
weights to the points which are far away, and higher weights to closer points. On the 
other hand, the rectangular window just counts the number of points which are within a 
particular sized window around that point, and assigns the test point to a class which has 
a bigger count.  
 
Moreover in the case of points which are far away from their actual class means (see the 
figure) we can observe that rectangular window method misclassifies the samples while 
Gaussian window performs much better. This can be especially seen in the first set of 
figures(100 training points). This happens because there are no points in a window of 
0.75 around those points and the points are classified by their priors, which obviously 
gives worse results, unless there is a huge difference between the priors of the two clases. 
 
For smaller window sizes the rectangular window seems to do better but not better than 
the Gaussian window function. There does not appear to be any appreciable effect of 
amount of training data on the performance of the classifier.  
 
2) Overlapping 2D Data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Class I Class II 

Mean [ 1 1 ] [ 2 2 ] 

Covariance 
0.8 0.07

0.07 0.5

 
 
 

 
0.7 0.21

0.21 0.56

 
 
 

 

10 35 65 90    %training 
H G R G R G R G R 

2 78.56 78.83 79.0 79.07 79.29 78.42 75.0 74.0 

1.25 80.17 78.94 78.85 78.31 78.29 78.14 81.5 80.0 

0.75 79.72 77.95 78.54 77.54 77.86 77.29 81.0 81.0 

0.50 79.76 74.44 78.62 76.77 78.0 76.58 81.0 79.0 



 

   
 

 
Figure (ii) showing the plots of Parzen Window technique using h=1.25. The left half 
contains results for classification using Gaussian window and the right half contains 
rectangular window 
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 In the above case we have chose overlapping data samples. As expected we start getting 
incorrect estimates of the density at the test points leading to large error as show in the 
tabular columns. However even in this case we notice that the Gaussian window function 
still gives a better estimate as it takes into account the contribution of all training points. 
However we can say that in the case of overlapping data the classifier as such does not do 
very well in the overlapped regions. 
 
 
 
 
 
 
3) 3-D overlapping data I 
 
 

                 
 

Class I Class II 

 
Mean 

 

 
[3 3 3] 
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10 35 65 90          

           %Train 

H R G R G R G R G 

0.5 58.61 91.72 74 92.6 80.71 93.42 82 92.5 

1 82 91.33 89.76 92.30 91.14 92.42 92.5 91 

1.5 88.94 90.11 92.93 91.46 93.42 92 92.5 89.5 

2 91.5 89.33 92.92 90.38 93.57 89.85 92.5 88.5 

 
 
 
 
 
 
 
 
 



 
 
 
 
4) 3-D overlapping data II 
 
 

                  
 

Class I Class II 

 
Mean 
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Covariance  
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10 35 65 90          
           %Train 

H R G R G R G R G 

0.15 50 82.83 50.4 84.53 50.57 85.14 50 87.00 

0.5 53.6 86.61 60.15 88.38 63 88.4 63.5  90 

1 67.38 88.11 80.23 88.07 83 88.14 86 88 

1.5 78.33 87.77 85.15 87.53 85.71 87.57 88 87.5 

2 83.72 87.44 87.23 87.07 87.28 87.14 88 86.5 

 
 
Note large numbers of correct samples are misclassified as there are no neighbours in 
the window leading to the flip of a coin method as we have assumed equal priors. 
 

 
 

Figure (iii) Sample plot for h=0.50 and 10% training data 
 



 
 

Fig(iv) The error plot for h=0.50 
 

 
 
3-D more overlapping with shifted mean 
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10 35 65 90  
           %Train 

H R G R G R G R G 

0.25 50.56 60.67 50.92 67.58 50.28 68.12 53 73 

0.5 50.88 67.55 53.76 72.23 55.71 72.14 56.5 73 

1 57.94 71.67 63.23 73.53 66.85 73.71 70 74.5 

2 69.27 71.72 72.46 75.38 76.71 73.85 78.5 74.5 

 
 
 
 

 
 



 

 

 
 
 
 
 Figure (v) showing the plots for h=1 for Gaussian and rectangular window for 
900,650,350 and 100 training samples respectively. 
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Figure (vi) showing the accuracy as a function of training samples 

 
We can observe that the results are similar to that of the 2D case, and the Gaussian 
window does much better than the rectangular window. As the amount of overlap 
increases, the performance of the classifier gets significantly poor. Also, the amount of 
training data (i.e. data available for estimation) does not seem to have a significant effect 
on the performance of the classifier in both the windows.  

 
 

We also observe that increasing the window size results in a significant improvement in 
the performance of the classifier using rectangular window function, wheras its effect is 
not much pronounced in the Gaussian case. This makes sense because, in this type of 
data, most of the error made in classification using rectangular window function, is 
because of the misclassification of the outlying points (i.e points which are too far away 
from the means of their respective classes), and by increasing the window size, we 
basically increase the amount of data points in the window, thus, reducing the chances of 
having a tie. Thus, we need to choose an optimum window size, which depends on the 
type of data, to maximize the classification accuracy. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



K Nearest Neighbors and Nearest Neighbour Technique 
 

We have operated on exactly the same data as in Parzen Window technique. The 
programs are implemented with the help of Matlab and the code is attached at the end of 
the section. 

 
EXPERIMENTS  
 
We performed experiments for data by varying the amount of separation, and by varying 
the value of K, for two types of window functions. Also, we vary the amount of data 
available in advance (training) from 10% to 90%. In this section, the various experiments 
which we conducted are listed, the plots of the data along with the misclassified test 
points (in red crosses), for both the methods, and their respective performance measures. 

 
 
1) 2-D data with very less overlap. 
 

 
 

Class I Class II 

Mean [ 1 1 ] [ 4 3 ] 

Covariance 
0.8 0.07
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The results are tabulated for the nearest neighbour(K=1) and other values of K. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   %training 
K 10 35 65 90 

1 88.67   86.61 85.43 88.0 

3 89.22 88.15 86.28 90.0 

5 89.88 90.15 88.0 87.0 

7 90.56 89.86 89.14 86.0 



 
We also conducted experiments on the same data using Manhattan distance 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
We do not observe a significant improvement of 1 distance metric over the other. 
 

 
The following are the plots of KNN with Euclidean distance metric K=1 
 

  

    
Figure (vii) the plots of Nearest neighbour with eucledian distance metric 

 
 In the case of K nearest neighbors we observe that classification accuracy varies as K is 
changed. We observe that K=1 does not perform as well as K=3,5 or 7. This indicates 
that K=1 is not as robust as taking higher values of K, which is quite intuitive.  
 
To prevent ties, we chose odd values of K.  
 

   %training 
K 10 35 65 90 

1 91.00   91.07  88.57   87.0 

3 90.89 90.00 88.28 89.0 

5 91.11 91.07 88.57 89.0 

7 91.22 91.38 89.71 88.0 



We observe some change in accuracy as the number of samples is increased but this is 
not appreciable to draw a conclusion about any correlation between increases in training 
samples against accuracy.  
 
We experimented by using Manhattan distance as a metric and found that it performs 
worse than the Euclidian distance in this case. 
 
 

 
 

2) 2-D data with more overlap. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Class I Class II 

Mean [ 1 1 ] [ 2 2 ] 

Covariance 
0.8 0.07

0.07 0.5
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   %training 
K 10 35 65 90 

1 43.89   38.15 42.57 47.0 

3 53.11 45.23 50.28 60.0 

5 54.33 50.46 52.57 59.0 

7 59.67 56.0 56.28 61.0 
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Figure (viii) showing K=7 classification for overlapping data 

 
 
Due to more amount of overlap, the performance of all the classifiers has reduced, as 
expected. Again, we see that K=1 is not as good as higher values for K, and the 
performance increases with an increase in the value of K.  
 
 
 
3) 3-D data with overlap 
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The results for various K are shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure (ix) showing K=7 classification for overlapping data with 100 and 350 training 
samples 

 
 
 
We next consider 3-D dataset, with more overlap, by increasing the variance of one of the 
data sets. 
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       %Tr 
K 

10 35 65 90 

1 81 81.53 82.85 87 
3 84.67 85.23 86 86 

5 85.11 86.15 86 86 

7 85.33 85.69 86.28 87 

9 85.44 85.69 86.85 86 
11 84.89 86.16 87.14 85 
13 85 86.46 87.42 86 



Results for KNN  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We also consider data with more overlap, by bringing the means closer together. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here again, we can see that the nearest neighbor technique performs poorly as compared 
to the other values of K, thus proving that it is not a good classification technique, which 
is quite intuitive. 
 
 
 
 
 
 
 
 

       %Tr 
K 

10 35 65 90 

1 65.67 68.61 67.42 72 
3 73.67 73.38 75.71 76 

5 74.55 76 75.42 81 

7 73.89 75.38 76.86 80 

9 74.33 77.23 77.14 80 
11 74.55 77.69 75.71 82 
13 75.44 77.69 76.28 85 

                  
 

Class I Class II 

 
Mean 
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       %Tr 
K 

10 35 65 90 

1 29.44 31.23 30.28 33 
3 39.77 37.23 38.85 38 

5 40.77 39.23 35.71 39 

7 42.77 38.15 43.42 47 

9 43.11 42.76 41.42 47 



 
 
 
 
CONCLUSIONS 
 
Based on our experiments on 2-D and 3-D for varying amounts of overlap using the 
Parzen Window and K nearest neighbor technique, we find that  
1) Parzen Window using a Gaussian window function results in better performance than 
that using a rectangular window function.  
2) K nearest neighbors out performs Nearest Neighbor technique and is more robust.  
3) KNN is better than the Parzen window technique using rectangular kernel because it 
does not misclassify the points which lie too far away from the means of their respective 
classes.  
4) Comparing Parzen window using Gaussian kernel,  with KNN, in our experiments we 
observe that in several cases Parzen windows perform better than KNN. This may be 
contrary to what is observed in practice. We believe that this is because we experimented 
with mainly overlapping data, so as to determine which classifier performs better when 
the classification problem is very difficult. We have used 2-D and 3-D synthetic data 
mainly with the objective of ease of visualization.  
5) The performance of SVMs and ANNs is very close to the performance of Parzen 
Window, KNN and Nearest Neighbor techniques, for the overlapping data that we 
considered.  
 
In general, we conclude that there is no universal classifier, which can do well in all the 
classification tasks. The choice of the classifier is highly dependent on the nature of the 
data at hand.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

MATLAB CODE for Parzen Window and KNN 
 

The following codes are contain “script files” we wrote up so as to speed up testing of 
our data. The script files essentially take the data and break it up into training and test 
data performs classification and reports the accuracy of the classifier and also plots the 
results of classification and the error plots. 
 
Script file for Parzen Window Technique 
 
function  [e1 e2]=simulate_parzen(X1,X2,h)  
  
%variables to hold size of input data  
[m n]=size(X1);  
[F d]=size(X2);  
z=1;  
  
%Gives different training percentages  
H=[100 350 650 900];  
  
%2-D case  
if (d==2)  
    for  I=1:4  
        plot(X1(:,1),X1(:,2), '.' );hold on;plot(X2(:,1),X2(:,2), 'o' );  
        
e1(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m ,:);X2(H(I)+1:m,:)],
[ones(m-H(I),1);2*ones(m-H(I),1)],h,1);  
        figure  
        plot(X1(:,1),X1(:,2), '.' );hold on;plot(X2(:,1),X2(:,2), 'o' );  
        
e2(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m ,:);X2(H(I)+1:m,:)],
[ones(m-H(I),1);2*ones(m-H(I),1)],h,2);  
        z=z+1;  
    end  
end  
  
%3-D case  
if (d==3)  
    for  I=1:4  
        plot3(X1(:,1),X1(:,2),X1(:,3), '.' );hold 
on;plot3(X2(:,1),X2(:,2),X2(:,3), 'o' );  
        
e1(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m ,:);X2(H(I)+1:m,:)],
[ones(m-H(I),1);2*ones(m-H(I),1)],h,1);  
         
        figure  
        plot3(X1(:,1),X1(:,2),X1(:,3), '.' );hold 
on;plot3(X2(:,1),X2(:,2),X2(:,3), 'o' );  
        
e2(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m ,:);X2(H(I)+1:m,:)],
[ones(m-H(I),1);2*ones(m-H(I),1)],h,2);  
        z=z+1;  
    end  



end  
  
plot(H,e1(1:z-1));hold on;plot(H,e2(1:z-1), 'r' )  
  
%Compute accuracy  
accuracy_rectangular=100-e1  
accuracy_gaussian=100-e2 
 
 
 
 

Code for Parzen Window based classification using r ectangular and 
Gaussian window functions. 
 
function [error]=parzen(X1,X2,Xtest,group,h,ch)  
  
%variables to hold size of input data ch gives the type of window 
function to use  
[m d]=size(X1);  
[p d]=size(X2);  
[Q R]=size(Xtest);  
  
%counts the number of misclassified points  
misc=0;  
  
%Rectangular Window  
if (ch==1)  
    for  k=1:Q  
        px0w1=0;  
        px0w2=0;  
        for  i=1:m  
            count=0;  
            for  j=1:d  
                %applying condition  
                if (abs((X1(i,j)-Xtest(k,j))/h) <0.5)  
                    count=count+1;  
                end  
            end  
            if (count==d)  
                px0w1=px0w1+1;  
            end  
        end  
        for  i=1:p  
            count=0;  
            for  j=1:d  
                %applying condition  
                if (abs((X2(i,j)-Xtest(k,j))/h) <0.5)  
                    count=count+1;  
                end  
            end  
            if (count==d)  
                px0w2=px0w2+1;  
            end  
        end  
  
        %Making a decision; use a toss of a coin to resolve  
conflicts/ties  
        if (px0w1>px0w2)  
            class=1;  
        elseif (px0w1<px0w2)  
            class=2;  
        else  



            chance=randperm(2);  
            if (chance(1) == 1)  
                class =1;  
            else  
                class =2;  
            end  
        end  
  
        %print misclassified points in red  
        if (class~=0 && group(k)~=class)  
        if (d==2),    plot(Xtest(k,1),Xtest(k,2), 'rX' );hold on  
        end  
        if (d==3),    plot3(Xtest(k,1),Xtest(k,2),Xtest(k,3), 'rX' );hold 
on  
        end  
            misc=misc+1;  
        end  
         
         
    end  
end  
  
%Gaussian Window  
if (ch==2)  
    for  k=1:Q  
      px0w1=0;  
      px0w2=0;  
        for  i=1:m  
            px0w1=px0w1+exp(-(0.5)*((X1(i,:)-Xtest( k,:))*(X1(i,:)-
Xtest(k,:))')/(h^2));  
        end  
        for  i=1:p  
            px0w2=px0w2+exp(-(0.5)*((X2(i,:)-Xtest( k,:))*(X2(i,:)-
Xtest(k,:))')/(h^2));  
        end  
  
        %Making a decision; use a toss of a coin to resolve  
conflicts/ties  
        if (px0w1>px0w2)  
            class=1;  
        else  
            class=2;  
        end  
  
        %print misclassified points in red  
        if (group(k)~=class)  
          if (d==2),  plot(Xtest(k,1),Xtest(k,2), 'rX' );hold on 
          end  
          if (d==3)  
              plot3(Xtest(k,1),Xtest(k,2),Xtest(k,3 ), 'rX' );hold on;  
          end  
            misc=misc+1;  
        end  
    end  
end  
  
error=(misc/Q)*100;  
hold off 
 

 



Code for K nearest neighbors. It takes the data and  the number of 
nearest neighbors as inputs and does all the necess ary tests. 
 
function  simulate_knn(X1,X2,k)  
  
%variables to hold size of input data  
[m n]=size(X1);  
[F d]=size(X2);  
z=1;  
  
%Gives different training percentages  
H=[100 350 650 900];  
  
if (d==2)  
    for  I=1:4  
        plot(X1(:,1),X1(:,2), '.' );hold on;plot(X2(:,1),X2(:,2), 'o' );  
        Xtrain=[X1(1:H(I),:);X2(1:H(I),:)];  
        Xtest=[X1(H(I)+1:m,:);X2(H(I)+1:m,:)];  
        group=[ones(H(I),1);2*ones(H(I),1)];  
        expec=[ones(m-H(I),1);1+ones(m-H(I),1)];  
        cl=knnclassify(Xtest,Xtrain,group,k);  
        for  t=1:length(cl)  
            if (cl(t)-expec(t)~=0)  
                plot(Xtest(t,1),Xtest(t,2), 'rX' );  
            end  
        end  
    e(z)=(sum(abs(cl-expec))/(m-H(I)))*100;  
    z=z+1;  
    figure  
    end  
end  
if (d==3)  
    for  I=1:4  
        plot3(X1(:,1),X1(:,2),X1(:,3), '.' );hold 
on;plot(X2(:,1),X2(:,2),X2(:,3), 'o' );  
        Xtrain=[X1(1:H(I),:);X2(1:H(I),:)];  
        Xtest=[X1(H(I)+1:m,:);X2(H(I)+1:m,:)];  
        group=[ones(H(I),1);2*ones(H(I),1)];  
        expec=[ones(m-H(I),1);1+ones(m-H(I),1)];  
        cl=knnclassify(Xtest,Xtrain,group,k, 'cityblock' );  
        for  t=1:length(cl)  
            if (cl(t)-expec(t)~=0)  
                plot3(Xtest(t,1),Xtest(t,2),Xtest(t ,3), 'rX' );  
            end  
        end  
        e(z)=(sum(abs(cl-expec))/(m-H(I)))*100;  
        z=z+1;  
        figure  
    end  
end  
  
figure  
plot(e(1:z-1))  
  
%Accuracy  
accuracy=100-e  
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