Question 1

T

.
INTRODUCTION : The Fisher cost function is given kl(w) = w :ZW' The value of
w S, w

w which optimizes this cost function is given by, = S, (m- m).
In this experiment, we modify the Fisher cost fumttby replacing the within class
scatter matrixS, by the identity matrix, in the Fisher cost funatid his implies that the

value of w which optimizes the modified Fisher clostction is given byw,, =(m - m).

AIM : We aim to classify different data sets by these tlassifiers — One using the
Fisher cost function, and the other, using the fredliFisher cost function; and compare
their performance.

METHOD : w, - solution obtained by optimizing the correct FEishost function.
w,. - solution obtained by optimizing the modified Fesltost function.

We used synthetic data for all our experimentacesiit gave great flexibility in
evaluating the performance of our classifiers fiffecent data sets. Basically, since we
wanted to see, whether the classification obtaimgdy, , can ever be better than that

obtained byw,, in some cases, we had to force the data to e $uat it gives a better
performance using the modified Fisher cost function

We wrote two programs in Matlab for each of thessifiers, which
1) Seperate the two data sets by finding the optimum w
2) Draw the projections of the data on the projecpitame
3) Draw the separation hyperplane.
4) Evaluate the performance of classification.

Performance was measured by projection the data th& plane containing w, and
examining whether the separation hyperplane segmrtite data in the two classes
satisfactorily.

The algorithm for drawing the plots are as follows:

1)  Find w vector from the formulae.

2)  Find the offset of the separation hypefemg from origin w0 =m.w
wherem is the global mean of the data.

3) Find a perpendicular to. For 2 D if w =[w(1) w(2)] we can choose a
perpendicular like [-w(2) w(1)] and use this towra line through woO.

4) For the 3D case if w=[w(1) w(2) w(3)] firaperpendicular direction like wn=
[-w(2) w(1) O].



5)  Project the data vectors on wn and subtfai@-projection on wn to find the
the projection on plane containing w.
6) To draw the hypersurface in 3-D compute

Z=(-w(1).x— w(2).yw0)/w(3)

7) Use MATLAB mesh(z) command to draw the plane.

EXPERIMENTS:
We performed experiments on data by varying thewusrhof separation, and by varying
the dimension. In this section, we have listed ¥heous experiments conducted, the

plots of the data along with the separation hy@empland the projection plane, for both
the methods, and their respective performance messu

2-D Data

1) Very well separated data

Data 1 Data 2
Mean [12] [-2 -4]

_ 04 O 04 O
Variance ( 0 o.4j ( 0 o.4j

Fisher

Modified Fisher

Error %

0

0
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Figure (i) showing the projections and separatigpér plane for the fisher discriminant
and for the modified fisher method respectivelye pimk and black are class | and class
2 data and the red and green are the projectiorthefdata. The blue line is the
separation line

Since the data is very well separated, both thénoaist classify the data very well, and
have a zero error.

2) Separated data which leadsto error.

In this experiment, we purposely generated data,which the Fisher method will
perform better than the modified Fisher.

Data 1 Data 2
Mean [5 6] [2 6]
, 10 01 O
Variance (O J (0 0.1}
Fisher Modified Fisher
Error % 0 3.85
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Modified Fisher method performs worse than Fismethis case, since the separation
plane it draws is perpendicular to the differendetie means, i.e. it only tries to

maximize the separation of the means of the prejedata. On the other hand, the Fisher
method not only tries to maximize the separatiothef means of the projected data, but

|
H

| | L L 1
E] El L] L] T

Figure (ii) showing the projections and separatioyper plane for the fisher discriminant
and for the modified fisher method respectivelye pimk and black are class | and class
2 data and the red and green are the projectionghef data. The blue line is the

also minimizes the variance, and hence, in this,aagives a better result.

3) Overlapping data

Data 1 Data 2
008 O 0
Mean (2 8] 0 008 O
0 0 0.08
, 8.48 -0.0 8.64 0.1
Variance (—0.05 7.617 (0.15 8.53
Fisher Modified Fisher
Error % 16.75% 16.85 %
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Figure (iii) showing the projections and separatioyper plane for the fisher
discriminant and for the modified fisher methodpesstively. The pink and black are
class | and class 2 data and the red and greerttagerojections of the data. The blue
line is the separation line

We observe, that the Fisher method again givesvarl@rror. But the modified Fisher
method also gives a comparable result in this basause, for this choice of data, the w
vector obtained by the Fisher method is very ctosel-w2.

4) Non over lapping data (which gives better performance with modified Fisher)

The results of all the experiments so far leadchts believing that Fisher method is better
than Modified Fisher. The motivation of this expeent was to investigate, whether this
is always true. Keeping in mind that the Fisherhuodttries to maximize the seperation
of the means and minimize the variance of the ptegédata, while the modified Fisher
method only maximized the separation of the meaesgenerated a data set, in which,
trying to minimize the variance of the projectedadawill lead to a wrong separation
surface.

We generated data, which has a huge variance x divection, and very less variance in
the y direction. Also, we placed the means on thexig. Following is a diagram,
showing the shape of the data set.

#—

Fig(iv) Showing the data and its projection (enladgview for the MODIFIED fisher’'s
method)



We can intuitively see, that modified Fisher wilfad/ a separation line which is
perpendicular to the x-axis. On the other hanayrder to reduce the variance, the Fisher
method will draw a separation which is slightlyad, and hence lead to misclassification.

Data 1 Data 2
Mean [25 O] [-25 0]
Vari 1026.9 6.3 1027.1 4.4
ariance
6.3 16.9 44 17.
Fisher Modified Fisher
Error % 16.025 0
Fisher Modified - 2D non overlapping Fisher - 2D non overlapping
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Figure (v) showing the projections and separatigpédr plane for the fisher discriminant
and for the modified fisher method respectivelye pimk and black are class | and class
2 data and the red and green are the projectionthefdata. The blue line is the
separation line



Figure (vi) showing the projections and separatityper plane for the modified fisher
method respectively. The pink and black are claswliclass 2 data and the red and
green are the projections of the data. The blue isthe separation line

We observe that, Fisher method does not alwaysmperbetter than the modified Fisher
method. But since the probability of coming acressh data in practice is pretty small,
and considering the success of the Fisher methttkinest of the cases, we can conclude
that Fisher method of classification does muchelo¢ktan the Modified Fisher method.

3-D data

5) Well separated data in which both yield similar results

Data 1 Data 2

Mean [1.0285 1.9437 3.0294] [-0.9586 @B -2.9299]
1 00 1 00
Variance 010 010
0 01 0 01




Fisher Modified Fisher
Error % 0 0

Figure (vii) showing 2 classes , the offset projtiand the separating plane for both the
methods.

Since the data is very well separated, both thénmaist classify the data very well, and
have a zero error. This result is same as thatr@utan 2-D, as expected.

6) Overlapping data

Data 1 Data 2
Mean [0.9912 2.0148 3.0280{] [-0.9889 Q%8 1.9961 ]
0.8 0.2 O. 0.8 0.2 O.
Variance 0.2 05 0. 0.2 05 0.
0.1 04 O. 0.1 04 O.
Fisher Modified Fisher

Error % 10.65 11.85




Figure (viii) showing 2 classes in pink and blatke offset projections in red and green
and the separating plane

We observe, that the Fisher method performs onlggmally better than the modified
Fisher method. This result is also the same asothtained in 2-D.

7) 3D Nonoverlapping in which Fisher does better

Data 1 Data 2
Mean [000] [220]
7 0 0 0.08 O 0
Variance 0O 005 O 0O 008 O
0O O 0.08 0 0O 0.08
Fisher Modified Fisher

Error % 0 11
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Figure (ix) showing 2 classes in pink and bladke offset projections in red and green
and the separating plane using the normal fishethiod

Modified Fisher method performs worse than Fismethis case, since the separation
plane it draws is perpendicular to the differendetr® means, i. e. it only tries to
maximize the separation of the means of the pregedata. On the other hand, the Fisher
method not only tries to maximize the separatiothef means of the projected data, but
also minimized the variance, and hence, in thig,cagives a correct separation plane.

CONCLUSION

We saw that in most of the cases for which we erparted, the Fisher method
performed better than the modified Fisher method.

But we also looked at a case (Experiment 4), whbkee modified Fisher's method
outperforms Fisher's method, and hence, we caw'ttlsat Fisher is always better than
modified Fisher. But considering the fact thasivery unlikely to come across such data
in practice very frequently, we can safely say tin&t Fisher method can be the better
choice among the two.



Matlab Code

%Fisher Discriminant function for 2 and 3D data. X1 , X2 are data
vectors

%with each row being a feature vector . d is the di mesnsion size and k
is

%the offset for plotting in 3-D
function  fisher(X1,X2,d,k,rt)

%variables to hold size of input data
[m n]=size(X1);
ml=zeros(1,d);
m2=zeros(1,d);

%Checking for data's dimensionality

if (d==3)

plot3(X1(:,1),X1(:,2),X1(:,3), )
hold on

plot3(X2(:,1),X2(:,2),X2(:,3), ot ),
end

if (d==2)

plot(X1(:,1),X1(;,2), m+');
hold on

plot(X2(:,1),X2(:,2), k*);
end

ml=mean(X1)
m2=mean(X2)
X=[X1;X2];

%glIm stores the global mean
glm=mean(X)

S1=cov(X1)

S2=cov(X2)

SW=S1+S2;

%Compute Weight function
w=(SW"-1)*(m1-m2)’;

if (d==3)
plot3(w(1)/(sgrt(w(1)*2 + w(2)"2 + w(3)"2)),w(2)/(s grt(w(1)"2 + w(2)"2
+ w(3)72)),w(3)/(sqrt(w(1)*2 + w(2)"2 + w(3)"2)), X' ),
end
if (d==2)
plot(w(1)/(sqrt(w(1)"2 + w(2)"2)),w(2)/(sqrt(w( "2 +
W((Zj)“Z)), xX)
en

magw=sqrt(w"*w);
vecw=w/magw;



if (d==3)

vecw2=[-vecw(2) vecw(1) 0];
mag2=sqrt(vecw2*vecw?2');
vecw2=vecw?2/mag2;

end
if (d==3)
for i=1:m

vecl(i,:)=X1(i,:)-(X1(i,:)*vecw2")*vecw2;
vec2(i,:)=X2(i,:)-(X2(i,:)*vecw2"*vecw?2;
end
end

%variables used for plotting the plane in 3-D
xmin=min(X(:,1));

xmax=max(X(;,1));

ymin=min(X(:,2));

ymax=max(X(:,2));

%plots the plane in between classes
if (d==3)
x=[xmin:0.1:xmax];
y=[ymin:0.1:ymax];
for i=1:length(x)
for j=1:length(y)
z(i,))=(-w(1)*x(i)-w(2)*y(j) +glm*w)/w(3);
end
end
[p d]=size(2);
mesh(y,x,2);
end

%Computes number of misclassified points
if (d==2)
for i=1:m
vecl(i,:)=(X1(i,:)*vecw)*vecw",
vec2(i,:)=(X2(i,:)*vecw)*vecw",
end
end
misc1=0;
misc2=0;
if (d==3)
for i=1:m
t1(i,-)=vecl(i,:)+k*vecw2;
t2(i,-)=vec2(i,:)+k*vecw?2;
if (X1(3i,:)*w - glm*w < 0)
miscl=miscl+1;
end
if (X2(i,:)*w - glm*w >0)
misc2=misc2+1;
end
end
end

if (d==3)
plot3(t1(:,1),t1(;,2),t1(;,3), e

, 'Color

) 'bl

);



plot3(t2(;,1),t2(:,2),t2(;,3), 'x' ,'Color' ,'g" );
end

%Compute accuracy and plot for 2-D
misc1=0;
misc2=0;
wO0=glm*vecw
r=wO*vecw';
if (d==2)
plot(r(1).r(2), X
line([(r(1)-k*vecw(2)),(r(1)+rt*vecw(2))],[(r(2 )+k*vecw(1)),(r(2)-
rt*vecw(1))]);
plot(vecl(:,1),vecl(;,2), b+ )
plot(vec2(:,1),vec2(;,2), ox:' )
for i=1:m
if (X1(i,:)*w - glm*w < 0)
miscl=miscl+1;
end
if (X2(i,:)*w - glm*w >0)
misc2=misc2+1;
end
end
accuracy=100*(1-(miscl+misc2)/(2*m))
end



Question 2

AIM: In this experiment, our aim is to perform a compeaeaanalysis of Neural
Networks and Support Vector Machines in terms a$sification performance.

METHOD : We have made use of in built tool boxes in Ma®lato perform our
experiments. A brief description of the toolboxas be found at the end of this section.

EXPERIMENTS:

In all our experiments, we use 1000 points for eafdine classes and vary the amount of
training and test data in the proportion 10-90,3%6-35 and 90-10 respectively.

For SVM, we have used two different kernels — théial basis kernel, and polynomial
kernel, and looked at their relative performances.

We have used the MLP neural network trained usiegebhberg-Marwuardt algorithm.
We have also experimented by changing the numbeidden neurons in some cases.

2-D data
2-D overlapping data
Data 1 Data 2
Mean [1 1] [4 3]

vari 0.8 0.0
ariance 007 05

1 05
05 1




100 Training Points

350 Training Points

Figure (i) Training data and support vectors for different proportions of training data

using radial basisfunction

# of Training Samples 100 350 650 900
Accuracy Neural Network | 93.72 95.42 96.85 94.83
(10 hidden neurons)
Accuracy RBF 94.9444 94.8462 95.4286 96

Kernel

Accuracy 2° degree poly. | 94.6667 94.7692 94.1429 94.5000
kernel

Accuracy o1 degree poly. | 94.5556 | 94.6154 | 94.2857 95
kernel

In this case, we have chosen data which has a amallint of overlap. We observe that
SVM using RBF kernel and polynomial kernel havénailar performance in this case.




With an increase in the amount of training dataplveerve that the performance of
SVM stays almost the same.

As opposed to this, with neural networks, we obsdimat with increase in the amount of
training data from 10% to 65%, the accuracy ofsifastion improves; but it drops
suddenly in the end, when we use 90% of the datiea@éng data. This trend is found in
all our experiments, and this proves that the perémce of neural networks drops due to
over fitting.

If we look at the relative performance of SVM areliral networks, we can see that
there is an insignificant difference between tipeirformances in this case. But the time
taken in case of neural networks was more thanoth@vM.

Also, if we increase the number of hidden neuronthe neural network, their
performance improves, but it comes at an expens&mase in the operating time.

2D more overlapping data with closer means

Data 1 Data 2
Mean [1 1] [2 2]

Var 08 00 07 021
ariance 007 05 021 05
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Figure (ii) Training data and support vectors for different proportions of training data
using radial basisfunction

# of Training Samples 100 350 650 900
Accuracy Neural Network| 76.67 77.61 80.14 50.0
Accuracy RBF 74.7222 75.0769 75.7143 78

Kernel

Accuracy 2° degree poly. | 74.8333 74.6923 73.714377
kernel

Accuracy Hd degree poly. | 74.0556 | 73.5385 NC NC
kernel




In this experiment we wanted to see what happemnwhe amount of overlap in the data
is increased. We observed that the performancetbfthe networks drops significantly

in this case.

With lesser amount of training, we observe thatralenetworks perform better than

SVM. But as we increase the amount of training,pldormance of SVM improves and
is pretty close to that of the neural network. 8i8d/M takes much lower time than NN,
we can say that their relative performances ind¢hge are almost equivalent.

3D data
Small amount of Overlap
Data 1 Data 2
Mean [111] [333 ]
1 00 1 00
Variance 0 20 0 2 0
0 0 5 0 0 5
# of Training Samples 100 350 650 900
Accuracy Neural Network| 85.55 87.38 88.0 86.32
Accuracy SVM 88.3889 | 89.3077 89.2857 92.5000
(RBF Kernel)
SVM does marginally better than NN in this case.
Overtraining of NN is also demonstrated here.
3D more overlapping by just increasing the variance
Data 1 Data 2
Mean [111] [333 ]
15 0 O 1 00
Variance 0 25 O 0 20
0O 0 55 0 0 5




# of Training Samples 100 350 650 900

Accuracy 87.7778 | 88.8462 88.2857 87.5000
(RBF Kernel)

In this case, the data have the same means a¥ that previous experiment, but the
variance of one of the data sets is increased.wandan clearly see that there is a
decrease in the accuracy of the SVM in this cabaswe conclude, that by increasing
the amount of overlap, the performance of the S\fbps.

3-D more overlapping with shifted mean

Data 1 Data 2

Mean [222] [111]

1 00 1 00

Variance 0 20 0 20

0 0 5 0 0 5
# of Training Samples 100 350 650 900

Accuracy Neural Network 68.16 69.31 72.0 71.33
Accuracy 72.2222| 70.8462 72.1429 74.5000
(RBF Kernel)

In this case, we increased the amount of overlaprimging the means closer together.

We observe that as the amount of overlap increéiseperformance of both the
classifiers reduces significantly. But in all theses, the performance of SVM is only
marginally better than the NN. But this is not eglotio say that SVM is “better” than
NNs. We can increase the number of hidden layetiseonumber of epochs, and in that
case, the performance of the NN may improve, btheaexpense of the increased time.

Thus, we can say that if trained appropriately, MBS achieve a good accuracy, but
SVMs can do as well, if not better, and in a mwessér amount of time.



SPIRAL DATA

The two spiral problem is one of the most demandlagsification problems [1] and [2],
and we wanted to see the relative performance asSahd ANNSs for this problem.
The data points of the two classes form two intkilog spirals, going about the origin.

The equations of the two spirals are +/6.

The code used to generate this kind of data, aneijoerimentation is attached in the end
of this section.
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Figure (iii) Training data and support vectors for different proportions of training data
using radial basisfunction

# of Training Samples 100 350 650 900
Accuracy Neural Network 41.61 45.07 30.71 33.0
Accuracy RBF 47.8889 48.1538 20.8571 2.5000
Kernel




In this case, we trained the SVM and NN, usingfitts¢ 100, 350, 650 and 900 points,
respectively. We observe that the results obtaamedsery poor for both NN and SVM.
This can be attributed to the fact that, since seduthe initial points for training, the
separation surfaces were good enough only to sepetraining data. And since the
test data is not at all correlated with the tragndata, both the networks performed very
poorly.

We can see this by observing thefigure, in which the accuracy is only 2.5%. This i
because, almost all the testing data which is peapfor the first class will fall in the
region of the second class, and vice versa.

Hence, it is not a good idea to draw any conclusadrout the classification performance
of the networks, by using this experiment, sinesgatially, we are asking it to predict
the data, rather than classify.

And hence, in our next experiments, we sampledi#t@ uniformly, and gave it for
testing, in which case, the results will be muchrenaeaningful, and will give the true
performance in terms of classification.

Sampled Spiral

For this experiment, we chose the spiral to hameaimum angle of 4*pi. And we also
varied the kernel function of the SVM, and the nemtf hidden neurons in the Neural
Network.

Fraction of samples 1/10 1/20
Accuracy NN 25 hidden 99.94 99.94
neurons
Accuracy Neural Network| 82.77 75.47
10 hidden neurons
Accuracy with & degree 99 94.2105
poly Kernel
Accuracy with
Rbf Kernel 55.77 56.63




Every 20th sample Every 10th sample

Flgure %v) Training data and support vectors for different proportl ons of training data

using 8" order polynomial function using every 20" and 10"
sample.
Every 10th sample Every 20th sample
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Figure (v) Training data and support vectors for different proportions of training data
using radial basis function using every 10" and 20" sample.

Comparison between kernels of SVM We can clearly see that using a polynomial
kernel of 8 degree gives a much better performance than ttained by using a RBF
kernel. We also tried using polynomial kernelsesiser degree, and found that beld 7
degree, the kernels perform very poorly. F8idégree polynomial kernel, the accuracy
was found to be 98.77%. Since tHeand &' degree kernels have a very high degree of
freedom, the results are found to be really impves®ven in the case of spiral data.
Also, we found that as we increase the # of rotatiof the spiral, we will need a
polynomial kernel with higher and higher degree.

Comparison between NN and SVM We can see that SVM with aff 8egree
polynomial used as kernel gives an accuracy of @8fn trained with every ftodata
point. And this is very good, if we compare it witte performance of the NN with 10



hidden neurons. But if we increase the number ddém neurons in the neural network,
we can obtain an accuracy of almost 100%, everifrain it with half the number of
points, which is impressive. But this comes atdkpense of increased operation time.

Thus, we can not say that one method is bettertti@nther, but the choice of method
depends on the type of application. If the applicatemands low time complexity, then
SVM is certainly a better option. But if it demandsy high accuracy, and there is no
time constraint, then NNs are better. In the réshe® cases, the decision has to be made,
based on what we are willing to sacrifice, accum@acyme.

We also performed an experiment by reducing théeamfghe spiral to 2.5*pi. The
motivation of this experiment was to see whetherRIBF kernel always performs badly.
In order to test this, we reduced the complexitthefspiral classification problem, by
reducing the angle of the spiral to 2.5*pi.

Interpolated Every 10th point Interpolated Every Sth point
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Figure(vi) Training data and support vectors for different proportions of training data
using radial basis function..




Fraction of Samples 1/10 1/5 1/2
ANN with 25 hidden 99.94 99.94 99.94
neurons
Accuracy of ANN with 10 | 66.89 76.23 81.33
hidden neurons
Accuracy RBF 86.5000 95.2500 96.5000
Kernel

We can see that the accuracy of the RBF networknaoved significantly in this case,

as compared to the previous case, and is actuetligrithan the accuracy of the NN with
10 hidden neurons. But as we observed in the pus\iase, we can always optimize the
number of neurons in the hidden layer, and acheevery good performance with Neural
Networks.

CONCLUSION

We performed classification by using both SVM aednal networks, for different types
of data, with varying amounts of overlaps, and agh spiral data, which is considered
to the most demanding classification problem. Basedur results, it is difficult to say
that one is better than the other. But one thirtgclvwe can surely say, is that, although
Neural Networks give a highly accurate performartivey take a lot of time. Also, they
face the problem of overfitting, and so, the amanfritaining has to be optimized to
avoid this problem. On the other hand, SVMs takg less time for training, and the
performance does not seem to vary a lot with thewarnof training. Also, unlike ANNS,
the computational complexity of SVMs does not depen the dimensionality of the
input space.

In essence, the choice of method depends on tleeofygpplication. If the application
demands low time complexity, then SVM is certaiallgetter option. But if it demands
very high accuracy, and there is no time constréiein NNs are better. In the rest of the
cases, the decision has to be made, based on whatewvilling to sacrifice, accuracy or
time.



SVM tool in Matlab®.

Commands used in the experiments:
1) svmtrain

svmtrain takes as input the test vectors, the gtioenp belong to, the kernel function , the
order of the polynomial in the case of a polynorkiinel and a option to show plot. The
show-plot option plots the training data labelihg tlasses and indicates the support
vectors chosen. It also draws the separation hydace. The function returns all these
data as a structure variable. This can be useldgsi@ication.

There are several options for Kernel Function archewve experimented with the Radial
Basis function and the polynomial kernel of varyorgers.

2) svmclassify

This command takes the above returned structurablarand the matrix of test vectors
and classifies them as either class 1 or clagsr@turns the classes of all the test vectors
in the order in which they appear. We can usert#tigned information to check the
accuracy of the classifier.

NNtool in Matlab®

This tool is a Graphical User Interface Tool. Tlsemcan specify several parameters of
the neural network such as the activation functibe,initial weights, the training and test
data, the number of epochs and the target dathdagiving training set.

The tool expects the user to give the training datae form of a d X n matrix where d is
dimensionality of the data and n is the numberahing vectors. It expects “target” data
in the form of a 1 X n vector each entry specifyihg class of the corresponding training
sample. Once this data is given we can “createh#teork by specifying the following:

a) Type of network

b) Training function

¢) Adaption Learning Function
d) Number of layers

e) Number of neurons per layer
f) Transfer Function for neurons.

Following are some snapshots of the tool
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Transfer Function: TAMSIG W

[ [ view ][ ¥ Restore Defaults ]

[ ¢ Create ] [ &) Closa ]




Network: network1

Wiew |Train Simulate | Adapt | Reinitislize Weights || view/Edit \Weights

MATLAB Code for spiral data generation and sampling

Equation of the spiral:

r=+ 6
clear all
clc

t=linspace(1,4*pi,100)";
ri=sqrt(t);
r2=-sqrt(t);

for i=1:length(t)
x1(i)=r1(i)*cos(t(i));
y1()=r1()*sin(t(i));
x2(i)=r2(i)*cos(t(i));
y2(i)=r2(i)*sin(t(i));
end

X1=[x1"y1T;
X2=[x2"'y2T;

=1

k=1,

for i=1:length(X1)
if (mod(i,10)==0)
X1 _new(:,j)=X1(,i);
X2_new(:,j)=X2(:,i);
=ity
else




X11 _new(:,K)=X1(:,i);
X21 _new(:,K)=X2(:,i);
k=k+1;
end

end

Xtrain=[X1_new X2_new]’;
Xtest=[X11l new X21 new];

ntrain=length(X1_new);
ntest=100-ntrain;

class = [ones(1,ntrain) 1+ones(1,ntrain)]’;
g = [ones(1,ntest) 1+ones(1,ntest)]’;

s=svmtrain(Xtrain,class, 'Kernel_function’ , 'polynomial’ , 'polyorder’ 8, 's
howplot' ,1);

p=svmclassify(s, Xtest)

miscl=sum(abs(p-q));
accuracy=100-100*miscl/(2*ntest)



Question 3

Parzen Window, K Nearest Neighbors and Nearest Neighbor s technique

AIM : In this experiment, we use three non-paramedgahniques, namely, Parzen
Window, K Nearest Neighbours, and Nearest Neighlbourclassification of data, and
compare their performances.

We used the same data as was used for Question 2.

1) Parzen Window Technique

We developed Matlab code for Parzen Window techmitpr two types of window
functions — Gaussian and Rectangular window funstido resolve ties, we made use of
the priors of the data. In the data that we usedhad the same number of points in both
the classes, and hence the priors were 50%. Ircade, we used a random number
generator to generate 1 or 2, and assigned thpdesdtto class 1 or class 2 accordingly.

EXPERIMENTS

We performed experiments for data by varying thewam of separation, and by varying
the window size, for two types of window functiodgso, we varied the amount of data
available for estimating the density function frd®% to 90%. In this section, we have
listed the various experiments conducted, the plotsthe data along with the
misclassified test points, in red crosses, for bthtb methods, and their respective
performance measures.

1) 2-D dlightly overlapping data

Class | Class Il

Mean [11] [43]

c _ 0.8 0.0 1 0.5
ovariance 0.07 0.5 05 1

Ytraining 10 35 65 90
G R G R G R G R

0.15 95.83 94.05| 95.77| 95.0 | 96.14 95.14| 95.0| 94.5

H

0.30 95.89 90.06| 96.07| 94.38| 96.29| 94.00| 95.0| 93.5

0.50 95.94 78.17| 96.0 | 88.39 95.71| 91.42| 95.5| 93.0

0.75 95.78 62.28| 95.85| 76.31| 95.14| 82.29| 94.0| 84.0
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Figure (i) showing the plots of Parzen Window technique using h=0.75.The left half
contains results for classification using Gaussian window and the right half contains
rectangular window



From the tables and figures we can observe thatp@rmormanceof Parzen Window

technique using Gaussian window function is a sim&oéstimate of the probability at a

given point since it takes into account all theadpbints in the set by giving smaller

weights to the points which are far away, and higheights to closer points. On the

other hand, the rectangular window just countsnilm@ber of points which are within a

particular sized window around that point, and gissithe test point to a class which has
a bigger count.

Moreover in the case of points which are far awaynftheir actual class means (see the
figure) we can observe that rectangular window etimisclassifies the samples while
Gaussian window performs much better. This candpe@ally seen in the first set of
figures(100 training points). This happens becabsee are no points in a window of
0.75 around those points and the points are cleddlify their priors, which obviously
gives worse results, unless there is a huge difeerdetween the priors of the two clases.

For smaller window sizes the rectangular windownse& do better but not better than
the Gaussian window function. There does not appedre any appreciable effect of
amount of training data on the performance of thesifier.

2) Overlapping 2D Data

Class | Class Il
Mean [11] [22]
c ] 0.8 0.0 0.7 0.21
ovariance
val 007 05 021 05
Qatraining 10 35 65 90

H

2 78.56| 78.83| 79.0 | 79.07] 79.29| 78.42| 75.0| 74.0

1.25 80.17) 78.94| 78.85| 78.31| 78.29| 78.14| 81.5| 80.0

0.75 79.720 77.95| 78.54| 77.54| 77.86| 77.29| 81.0| 81.0

0.50 79.76 74.44| 78.62| 76.77| 78.0 | 76.58 81.0| 79.0
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Figure (ii) showing the plots of Parzen Window technique using h=1.25. The left half
contains results for classification using Gaussian window and the right half contains
rectangular window




In the above case we have chose overlapping datples. As expected we start getting
incorrect estimates of the density at the testtpdemding to large error as show in the
tabular columns. However even in this case we adhat the Gaussian window function
still gives a better estimate as it takes into antahe contribution of all training points.
However we can say that in the case of overlap@atg the classifier as such does not do
very well in the overlapped regions.

3) 3-D overlapping data |

Class | Class li
Mean [33 3] [111]
Covariance 1 00 1 0 0
0 20 0 20
0 0 5 0 0 5
110 35 65 90
%Train
H R G R G R G R G
0.5 58.61 91.72| 74 92.6 | 80.7193.42|82 | 925
1 82 91.33 89.76| 92.30| 91.14| 92.42| 92.5| 91
1.5 88.94) 90.11| 92.93| 91.46| 93.42| 92 92.5| 89.5
2 91.5 | 89.33 92.92| 90.38| 93.57| 89.85| 92.5| 88.5




4) 3-D overlapping data ||

Class | Class Il
Mean [333] [111]
Covariance
15 0 O 1 0O
0O 25 O 0 20
0O O 55 0 0 5
110 35 65 90
Y%Train
H R G R G R G R G
0.15 50 82.8350.4 | 84.53 50.57| 85.14| 50 87.00
0.5 53.6 | 86.6160.15| 88.38| 63 88.4 [ 63.5/90
1 67.38| 88.11| 80.23| 88.07| 83 88.14| 86 88
15 78.33| 87.77| 85.15| 87.53| 85.71| 87.57| 88 875
2 83.72| 87.44| 87.23| 87.07| 87.28| 87.14| 88 86.5

Note large numbers of correct samples are misfiedsis there are no neighbours in
the window leading to the flip of a coin methodwashave assumed equal priors.

Figure (iii) Sample plot for h=0.50 and 10% training data
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Fig(iv) Theerror plot for h=0.50

3-D mor e overlapping with shifted mean

Class | Class Il
Mean [2 2 2] [111]
1 0 01 0 O 100
Covariance 02011020 0 2 0
0O 0 5{(0 0 5 00 5
_ 10 35 65 90
%Train
H R G R G R G R G

0.25 50.56 60.67| 50.92| 67.58| 50.28| 68.12| 53 | 73

0.5 50.88| 67.55| 53.76| 72.23| 55.71| 72.14| 56.5| 73

1 57.94| 71.67| 63.23| 73.53| 66.85| 73.71| 70 | 74.5

2 69.27| 71.72| 72.46| 75.38| 76.71| 73.85| 78.5| 74.5




Figure (v) showing the plots for h=1 for Gaussian and rectangular window for
900,650,350 and 100 training samples respectively.
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Figure (vi) showing the accuracy as a function of training samples

We can observe that the results are similar to ¢ahe 2D case, and the Gaussian
window does much better than the rectangular winddw the amount of overlap
increases, the performance of the classifier ggtsfieantly poor. Also, the amount of
training data (i.e. data available for estimatidogs not seem to have a significant effect
on the performance of the classifier in both thedews.

We also observe that increasing the window sizeltees a significant improvement in
the performance of the classifier using rectangwiadow function, wheras its effect is
not much pronounced in the Gaussian case. This snsd@se because, in this type of
data, most of the error made in classification gisiactangular window function, is
because of the misclassification of the outlyingno(i.e points which are too far away
from the means of their respective classes), andnbreasing the window size, we
basically increase the amount of data points inatimelow, thus, reducing the chances of
having a tie. Thus, we need to choose an optimundow size, which depends on the
type of data, to maximize the classification accyra



K Nearest Neighborsand Nearest Neighbour Technique

We have operated on exactly the same data as ierfPalindow technique. The
programs are implemented with the help of Matlath #re code is attached at the end of
the section.

EXPERIMENTS

We performed experiments for data by varying theam of separation, and by varying
the value of K, for two types of window function&lso, we vary the amount of data
available in advance (training) from 10% to 90%:tHis section, the various experiments
which we conducted are listed, the plots of theaddbng with the misclassified test
points (in red crosses), for both the methods,thad respective performance measures.

1) 2-D data with very less overlap.

Class | Class Il

Mean [11] [43]

c ] 0.8 0.0 1 05
ovariance 0.07 0.5 05 1

The results are tabulated for the nearest neigliie@) and other values of K.

Yraining

K 10 35 65 90

1 88.67| 86.61| 85.43 | 88.0

3 89.22| 88.15 86.28 | 90.0

5 89.88| 90.15 88.0 | 87.0

7 90.56| 89.86 89.14 | 86.0




We also conducted experiments on the same datg Manhattan distance

Ytraining

K 10 35 65 90

1 91.00| 91.07| 88.57 | 87.0

3 90.89| 90.00 88.28 | 89.0

5 91.11| 91.07 88.57 | 89.0

7 91.22| 91.38 89.71| 88.0

We do not observe a significant improvement ofstatice metric over the other.

The following are the plots of KNN with Euclidearsthnce metridc<=1
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Figure (vii) the plots of Nearest neighbour with eucledian distance metric

In the case of K nearest neighbors we observecthssification accuracy varies as K is
changed. We observe that K=1 does not perform disaweK=3,5 or 7. This indicates
that K=1 is not as robust as taking higher valuds, avhich is quite intuitive.

To prevent ties, we chose odd values of K.



We observe some change in accuracy as the numisangdles is increased but this is
not appreciable to draw a conclusion about anyetation between increases in training
samples against accuracy.

We experimented by using Manhattan distance astacmand found that it performs
worse than the Euclidian distance in this case.

2) 2-D data with more overlap.

Class | Class Il
Mean [11] [22]
Covar 0.8 0.0 0.7 0.21
ovariance 007 05 021 05
Yttraining
K 10 35 65 90

1 43.89| 38.15| 42.57 | 47.0

3 53.11| 45.23 50.28 | 60.0

5 54.33| 50.46 52.57 | 59.0

7 59.67| 56.0| 56.28 61.0
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Figure (viii) showing K=7 classification for overlapping data

Due to more amount of overlap, the performancelloftha classifiers has reduced, as
expected. Again, we see that K=1 is not as goodigker values for K, and the
performance increases with an increase in the \@&le

3) 3-D data with overlap

Class | Class Il
Mean [333] [111]
Covariance 1 00 1 00
0 20 0 20
0 05 0 05




Theresultsfor variousK ar e shown below:

%Tr| 10 35 65 90
K
1 81 81.53 82.85 87
3 84.67 85.23 86 86
5 85.11 86.15 86 86
7 85.33 85.69 86.28 87
9 85.44 85.69 86.85 86
11 84.89 86.16 87.14 85
13 85 86.46 87.42 86

Figure (ix) showing K=7 classification for overlapping data with 100 and 350 training
samples

We next consider 3-D dataset, with more overlapnbyeasing the variance of one of the
data sets.

Class | Class Il
Mean [3 3 3] [111]
Covariance
15 0 O 1 0O
0O 25 O 0 20
0O O 55 0O 0 5




Resultsfor KNN

%Tr| 10 35 65 90

K

1 65.67 68.61 67.42 72
3 73.67 73.38 75.71 76
5 74.55 76 75.42 81
7 73.89 75.38 76.86 80
9 74.33 77.23 77.14 80
11 74.55 77.69 75.71 82
13 75.44 77.69 76.28 85

We also consider data with more overlap, by brigdive means closer together.

Class | Class
[2 2 2] [111]
Mean
Covariance 1 0 O\/1 0 O 1 00
0 2 0/|0 2 O 0 20
0O 0 5{(0 0 5 0 0 5
%Tr| 10 35 65 90
K
1 29.44 31.23 30.28 33
3 39.77 37.23 38.85 38
5 40.77 39.23 35.71 39
7 42.77 38.15 43.42 47
9 43.11 42.76 41.42 47

Here again, we can see that the nearest neightiomi¢gie performs poorly as compared
to the other values of K, thus proving that it & a good classification technique, which
IS quite intuitive.



CONCLUSIONS

Based on our experiments on 2-D and 3-D for vanangounts of overlap using the
Parzen Window and K nearest neighbor techniqudingehat

1) Parzen Window using a Gaussian window functesults in better performance than
that using a rectangular window function.

2) K nearest neighbors out performs Nearest Neigtdmhnique and is more robust.

3) KNN is better than the Parzen window technigsmgi rectangular kernel because it
does not misclassify the points which lie too faag from the means of their respective
classes.

4) Comparing Parzen window using Gaussian kermélh KNN, in our experiments we
observe that in several cases Parzen windows pert@tter than KNN. This may be
contrary to what is observed in practice. We bélithat this is because we experimented
with mainly overlapping data, so as to determinéctvitliassifier performs better when
the classification problem is very difficult. WeJeaused 2-D and 3-D synthetic data
mainly with the objective of ease of visualization.

5) The performance of SVMs and ANNSs is very closethte performance of Parzen
Window, KNN and Nearest Neighbor techniques, foe twerlapping data that we
considered.

In general, we conclude that there is no univeckdsifier, which can do well in all the
classification tasks. The choice of the classisehighly dependent on the nature of the
data at hand.



MATLAB CODE for Parzen Window and KNN

The following codes are contain “script files” weote up so as to speed up testing of
our data. The script files essentially take theadaid break it up into training and test
data performs classification and reports the aoyucd the classifier and also plots the
results of classification and the error plots.

Script filefor Parzen Window Technique
function [el e2]=simulate_parzen(X1,X2,h)

%variables to hold size of input data
[m n]=size(X1);

[F d]=size(X2);

z=1,

%Gives different training percentages
H=[100 350 650 900];

%2-D case
if (d==2)
for 1=1:4
plot(X1(:,1),X1(:,2), """ )hold on;plot(X2(:,1),X2(:,2), ‘0" ),

el(z)=parzen(X1(1:H(),:),X2(1:H(I),:),[X1(H()+1:m ) X2(H(D+1:m,)],
[ones(m-H(l),1);2*ones(m-H(l),1)],h,1);

figure

plot(X1(:,1),X1(:,2), """ )hold on;plot(X2(:,1),X2(:,2), ‘0" ),

e2(z)=parzen(X1(1:H(1),:),X2(L:H(),:),[X1(H()+1:m ) X2(H(D+1:m,))],
[ones(m-H(l),1);2*ones(m-H(l),1)],h,2);

z=z+1;

end
end

%3-D case
if (d==3)

for 1=1:4

plot3(X1(:,1),X1(:,2),X1(:,3), """ );hold
on;plot3(X2(;,1),X2(:,2),X2(:,3), o' );

el(z)=parzen(X1(1:H(1),:),X2(1:H(1),:),[ X1 (H()+1:m 2 X2(H(D)+1:m,)],
[ones(m-H(l),1);2*ones(m-H(l),1)],h,1);

figure
plot3(X1(:,1),X1(:,2),X1(:,3), "' );hold
on;plot3(X2(;,1),X2(:,2),X2(:,3), o' );

e2(z)=parzen(X1(1:H(1),:),X2(L:H(1),:),[ X1 (H()+1:m 2 X2(H(D)+1:m,2)],
[ones(m-H(l),1);2*ones(m-H(l),1)],h,2);

z=z+1,

end



end
plot(H,e1(1:z-1));hold on;plot(H,e2(1:z-1), ™)

%Compute accuracy
accuracy_rectangular=100-el
accuracy_gaussian=100-e2

Code for Parzen Window based classification using r ectangular and
Gaussian window functions.

function [error]=parzen(X1,X2,Xtest,group,h,ch)

%variables to hold size of input data ch gives the type of window
function to use

[m d]=size(X1);

[p d]=size(X2);

[Q R]=size(Xtest);

%counts the number of misclassified points
misc=0;

%Rectangular Window
if (ch==1)
for k=1.Q
px0w1=0;
px0w2=0;
for i=1:m
count=0;
for j=1.d
%applying condition
if (abs((X1(i,))-Xtest(k,j))/h) <0.5)
count=count+1;
end
end
if (count==d)
pxOwl=px0wl+1;
end
end
for i=1l:p
count=0;
for j=1.d
%applying condition
if (abs((X2(i,j)-Xtest(k,j))/h) <0.5)
count=count+1,
end
end
if (count==d)
pxOw2=px0w2+1;
end
end

%Making a decision; use a toss of a coin to resolve
conflicts/ties
if (pxOwl1l>px0w2)
class=1;
elseif  (pxOwl<px0w2)
class=2;
else



chance=randperm(2);
if (chance(l) ==1)
class =1,
else
class =2;
end
end

%print misclassified points in red
if (class~=0 && group(k)~=class)

if (d==2), plot(Xtest(k,1),Xtest(k,2), X' );hold  on
end
if (d==3), plot3(Xtest(k,1),Xtest(k,2),Xtest(k,3), X' );hold
on
end
misc=misc+1;
end
end
end

%Gaussian Window
if (ch==2)
for k=1.Q
px0w1=0;
px0w2=0;
for i=1:m
px0w1=px0wl+exp(-(0.5)*((X1(i,:)-Xtest( K,))*(X1(i,:)-
Xtest(k,:)))/(h"2));
end
for i=1:p
px0w2=px0w2+exp(-(0.5)*((X2(i,:)-Xtest( k,))*(X2(i,:)-
Xtest(k,:)))/(h"2));
end

%Making a decision; use a toss of a coin to resolve
conflicts/ties
if (pxOwl1l>px0w2)
class=1;
else
class=2;
end

%print misclassified points in red
if (group(k)~=class)
if (d==2), plot(Xtest(k,1),Xtest(k,2), X' )hold  on
end
if (d==3)
plot3(Xtest(k,1),Xtest(k,2),Xtest(k,3 ), X" );hold  on;
end
misc=misc+1,;
end
end
end

error=(misc/Q)*100;
hold off



Code for K nearest neighbors. It takes the data and
nearest neighbors as inputs and does all the necess

function  simulate_knn(X1,X2,k)

%variables to hold size of input data
[m n]=size(X1);

[F d]=size(X2);

z=1;

%Gives different training percentages
H=[100 350 650 900];

if (d==2)
for 1=1:4
plot(X1(:,1),X1(:,2), "' );hold
Xtrain=[X1(1:H(1),:);X2(L:H(1),)];
Xtest=[XL(H()+1:m,:);X2(H()+1:m,:)];
group=[ones(H(l),1);2*ones(H(l),1)];
expec=[ones(m-H(l),1);1+ones(m-H(l),1)];
cl=knnclassify(Xtest,Xtrain,group,k);
for t=1:length(cl)
if (cl(t)-expec(t)~=0)
plot(Xtest(t,1),Xtest(t,2),
end
end
e(z)=(sum(abs(cl-expec))/(m-H(1)))*100;
z=7+1,

figure
end
end
if (d==3)
for 1=1:4
plot3(X1(:,1),X1(:,2),X1(:,3),
on;plot(X2(:,1),X2(:,2),X2(:,3), ‘0" ),

Xtrain=[X1(1:H(1),:);X2(L:H(1),)];
Xtest=[XL(H(1)+1:m,:);X2(H()+1:m,:)];
group=[ones(H(l),1);2*ones(H(I),1)];
expec=[ones(m-H(l),1);1+ones(m-H(l),1)];
cl=knnclassify(Xtest,Xtrain,group,k,
for t=1:length(cl)
if (cl(t)-expec(t)~=0)
plot3(Xtest(t,1),Xtest(t,2),Xtest(t
end
end
e(z)=(sum(abs(cl-expec))/(m-H(1)))*100;
z=z+1;
figure
end
end

figure
plot(e(1:z-1))

%Accuracy
accuracy=100-e

the number of
ary tests.

on;plot(X2(:,1),X2(:,2), ‘0" );

™)

);hold

‘cityblock’ );

3), X )
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