
Homework 2 

 

ECE 662 

 

4/1/2008 



Question 1  Parametric Method Revisited 
 

During the in class discussion on parametric method, the approach of drawing a 

separation hyper-plane between two classes was discussed. A hyper-plane was found by 

obtaining the argmax of the cost function, ( )
T
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found to be ( )1
0 1 2ww S m m−= − , where m1 and m2 are the sample means of the two 

classes being separated by the hyper-plane. The issue being raised in this section is can 

the cost function simply be replaced by ( ) T
BJ w w S w= , which would effectively set SW as 

the identity matrix. 

 Six different numerical experiments were performed exploring this line of 

thought. First, exploring the simplified cost function, classes that are well separated but 

not distributed normally is investigated. Specifically in this case, the classes are Africa 

and Europe and the feature vectors are crude birth rate (x-axis) and life expectancy at 

birth (y-axis). 

 
Figure 1 Europe vs. Africa hyper-plane from simplified cost function 

Africa misclassification: 18.52% 

Europe misclassification: 0% 



As can be seen from the results in Figure 1, the classification for Europe is very 

good, but can be attributed to a close clustering of the data, and not necessarily to a well 

drawn hyper-plane. A hyper-plane that would lower the percentage of African countries 

being misclassified would be more desirable, therefore no definitive conclusions can be 

drawn from only this test. Next, the same feature vectors and same classes will be used, 

however, the more complicated cost function will be used.  

 
Figure 2 Europe vs. Africa hyper-plane from original cost function 

 

From the results in Figure 2 it would seem that the simpler cost function would 

result in a better hyper-plane. However, this is not a conclusive result because the Europe 

class is very well clustered and could be affecting the algorithm. Therefore, in the next 

test, the same feature vectors are used but the Europe class is changed to Asia. Once 

again the simpler cost function is tested out first.  

As can be seen in Figure 3, neither class is well separated from the other, nor are 

the data points normally distributed.  Still the Africa misclassification percentage is lower 

than in the previous case with the complex cost function and a well separated Europe 

class. However, before any conclusions are drawn, the complex cost function must be 

applied to this new data. Figure 4 demonstrates that the more complex function both 

Africa misclassification: 25.93% 

Europe misclassification: 0% 



decreased the error of one class, but dramatically increased the error of the other. 

Therefore, one more set of experiments will be done to demonstrate the effectiveness of 

the either functions. 

 
Figure 3 Asia vs. Africa hyper-plane from simplified cost function 

 
 

  
Figure 4 Asia vs. Africa hyper-plane from original cost function 

Africa misclassification: 22.22% 

Asia misclassification: 20% 

Africa misclassification: 14.81% 

Asia misclassification: 56% 



For the next set, data will be created in a similar fashion as that from the previous 

homework. The data will be somewhat uncorrelated and in a random normal distribution 

(means of  (-8, -8), (8, 8) and variances of 10 for both). Once again the less complex 

equation is used first. 

Once again a reasonable hyper-plane is created, but as before no conclusions can 

be drawn until the complex function is taken into account. In this case, the percentages of 

misclassification for both classes were lowered.  

Therefore, drawing a definitive conclusion is difficult because of the mixed 

results from the experiments. The clearest and most concise conclusion that can be given 

is that it depends on the data being classified. In some cases, such as the clearly clustered 

data, the simplified equation lends itself to bettering the hyper-plane. However, in other 

cases such as the two normal distributions, the more complex was better. 

 

 
Figure 5 Normally distributed data hyper-plane from simplified cost function 

 

 

Class 1 misclassification: 33.33% 

Class 2 misclassification: 15% 



 
Figure 6 Normally distributed data hyper-plane from original cost function 

 

Question 2  ANN vs. SVM 
 The basic point of this problem is to design a classifier based on each method and 

then compare them. To make a fairly straightforward and relatively simple experiment, 

for both the artificial neural network and support vector machine, all the available feature 

vectors will be used. This will make for an interesting experiment because some of the 

vectors are well separated as in Figure 1 and 2, while others are not so clearly separated 

as in Figure 3 and 4.  

 For the ANN, the type of function to be used in the hidden layer is decided upon. 

During the first phase each training point is put through the network for the purpose of 

adjusting the weights through back propagation. The cost function that is used is 
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and optimized using the gradient descent. The output is then 

determined by the output of the hidden layer functions and the weights between the 

hidden layer and output layer. After the outputs have been determined, they are compared 

to the actual data, and the weights are adjusted accordingly. Once the training data has 

Class 1 misclassification: 22.22% 

Class 2 misclassification: 10% 



been run through, the test data is put through and no adjustments are made. Whereas, for 

the SVM, the training data is loaded into the program. Then the hyper-plane that 

maximizes the distance between the two classes is then determined. Since there are only 

two classes being classified, there is no real need for a kernel trick of any kind. 

For the neural network the sigmoid function ( ) 1
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f x
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 was the main 

consideration. A Gaussian function was also considered, but the error was much greater 

than that of the sigmoid functions. Therefore, it was not pursued further. The mean-

squared error was calculated for different number of nodes in the training set as well as in 

the test set. The results are shown in Table 1.  

 

Table 1 Mean-squared error for different number of nodes in a neural network 

  Sigmoid Gaussian 
number of nodes 1 3 10 3 

mean-squared 
error (training) 11.10% 10.50% 10.10%   

mean-squared 
error (testing) 11.4522% 11.5310% 11.8255% 13.0547% 

 

Upon inspection of the results, several interesting occurrences take place. One 

being, that as the number of nodes increase the mean-squared error based on the training 

data decreases. However, namely, that as the number of nodes increases so does the 

mean-squared error based on the testing data. One possible explanation as to why this 

problem arises is that as the number of nodes increases, so does the over-fitting. One way 

to reduce the chances of that from happening is to add more data points. Unfortunately, in 

this case, there are a fixed number of points, half of which must be set aside for testing 

purposes. 

The support vector machine in this experiment is only able to handle two classes 

at a time. As in a similar fashion to the neural network, all the feature vectors were 

included. Two specific cases were explored using the SVM. First, was the case of Africa 

versus Asia. As previously seen in Figure 3 and 4, there is a portion of the data 

overlapping resulting in misclassification. In Figure 7 it can be seen that as the rate of 

false positives increases, the rate of true positives rises. It rises slowly at first and then 



quickly at the very end. However, a rate of 60% false positives is needed to do slightly 

better than guessing (50%) true positives.  

There was another case discussed in the first question. Namely, deciding between 

the classes of Africa and Europe. This set contained a noticeably separate Europe cluster 

from a spread out Africa. Even with just a hyper-plane in that case, the decision surface 

was fairly accurate (< 20% error). When put through the SVM with a false positive rate 

of approximately 5%, the SVM can attain approximately 90% true positive accuracy. 

 

 
Figure 7 False positives vs. True positives for the Africa vs. Asia SVM 

 

Comparing the results of the ANN and SVM, in one case the ANN performs 

much better, and in the other, the SVM performs better.  

In side by side comparison it would seem that the neural network would tend to 

be better because of cases such as Africa versus Asia. However, that is only a tendency, 

as was shown with Europe versus Africa, under certain conditions the SVM is able to 

outperform the neural network. This is similar to the conclusion drawn earlier about the 

results are not definitive, but rather, depend on the data being used. 



 
Figure 8 False positives vs. True positives for the Africa vs. Europe SVM 

   

Question 3  Parzen Window vs. KNN vs. NN 
 Similar to the previous question, in this case the objective is to design three 

different types of classifiers based on the three methods of Parzen windows, K nearest 

neighbor, and nearest neighbor. Unlike in the previous question with the SVM that dealt 

with two classes at a time. In this case, all six classes will be included. This results in a 

different guessing accuracy of 16.67% than in previous cases of 50%. This means that 

anything below 83.33% error will be considered better than guessing. 

 All three of the programs follow the same basic method. A test point is taken and 

compared to all the training points one at a time. A distance is calculated for each training 

point using the Minkowski metric for various values of p. That value is put into a matrix 

along with its respective class. This distance matrix is then sorted showing the closest 

training point at the top. 

 For the Parzen window method, each distance is weighted using a Gaussian 

window. The value of the distance is given to be the mean while the variance is varied to 

experiment with different levels of accuracy. The function is then evaluated at zero. This 

has the effect of translating the coordinate system of a given test point to the origin and 



then rotating it so that the training point being weighted is on the x-axis. All the weights 

for the different classes are added, and the class with the largest tally is assigned to that 

particular test point. This is repeated for every test value. 

 For K nearest neighbor, the same sorting algorithm is used at the beginning. 

However, instead of weighting the distances as in Parzen window, each class is given a 

weight of one. Also, since there is no variance to vary, the value for K is varied. The 

value of K is used to determine how many of the closest training points to consider. What 

that relates to in the distance matrix is the number of top rows to consider. Then, as in 

Parzen window, all the votes for each class are added, and the largest tally is assigned to 

that particular test point. 

 Lastly, the nearest neighbor uses the same sorting algorithm as the others. 

However, the number of rows to consider in the vote depends on a specified value within 

the range of distances. This could create a problem because some feature vectors 

represent percentages of populations while others represent portions of populations in the 

thousands. In order to minimize the necessary work to determine an appropriate value 

limit, a percentage of the range is used and added to the closest distance. 

 There are many degrees of freedom that can be manipulated in each of these 

techniques: The dimensionality of the feature space, the grouping of feature vectors, the 

type of metric, and the parameters specific to each method. The results in the following 

tables are the best of the method specific parameter (variance, K, percent of range) 

manipulations that produced the lowest percentage of error. Also, for the KNN and PW, 

the best training feature vector was paired with each test feature vector.  

From these results it can be seen that parameter values depend largely on the data 

being used. In many cases, as the method specific parameters were increased, the error 

would decrease up to a point, and then start to increase. In this case the actual class of 

each test point was known, so calculating the error and seeing the various trends was 

relatively simple. However, in a real system, where the class of the test points are 

unknown, a great deal of time would need to be invested in analyzing what values the 

parameters need to be set at.  

One of the biggest problems, especially in KNN, was the fact that there was a 

disproportionate amount of data for some classes. When it came to large values of K the 



shear number of Africa training points would cause misclassifications. North America 

was never assigned to test vector because there was only one training point, and it could 

not get a majority vote.  

 Drawing a simple conclusion of which technique is better is very difficult with the 

results of the various experiments. If based on accuracy, the ranking would go KNN, NN, 

PW because the best for each was 32.6%, 34.7%, and 35.7%, respectively. If based on 

precision, the order would be NN, KNN, PW because the worst for each was 48%, 67%, 

74.5%, respectively. However, despite the poor performance of Parzen window, based on 

the assumption made at the beginning of the question, it is still more accurate than 

guessing between 6 regions. 

Table 2 Percent error for various parameters of KNN and PW 

 K Nearest Neighbor Parzen Window 
 vector(s) kval %error vector(s) variance %error 

1D 7 12 37.7551 4 3 40.8163 

           

Manhattan 2,8 25 50 2,8 8 55.102 
  3,2 15 61.2745 3,8 17 61.2245 
  4,7 30 36.7347 4,6 3 63.2653 
  5,4 16 67.3469 5,4 10 74.4898 
  6,4 9 51.3469 6,8 12 56.1224 
  7,4 30 36.7347 7,4 3 41.8367 
  8,4 24 43.8776 8,4 7 44.898 

            

Euclidean 2,8 14 45.9184 2,4 15 44.898 
  3,6 4 51.0204 3,8 8 54.0816 
  4,5 14 38.7755 4,5 15 35.7143 
  5,4 16 35.7143 5,4 5 35.7143 
  6,8 1 47.9592 6,4 12 47.9592 
  7,7 12 37.7551 7,4 3 40.8163 
  8,4 7 36.7347 8,4 2 41.8367 

           

p=100 2,8 15 45.9184 2,7 1 61.2245 
  3,8 8 50 3,4 11 60.2041 
  4,5 23 32.6531 4,8 19 51.0204 
  5,4 23 32.6531 5,4 4 36.7347 
  6,8 1 48.9796 6,8 6 50 
  7,7 12 37.7551 7,4 3 40.8163 
  8,4 6 38.7755 8,4 4 42.8571 
 

 



Table 3 Percent error for various parameters of NN 

Nearest Neighbor 

% of Range 1D 2D manhattan 2D Euclidian 2D p=100 
  vector % error vector pair % error vector pair % error vector pair % error 

5 4 42.8571 7,4 42.8571 8,4 41.8367 4,4 42.8571 
10 7 41.8367 7,4 41.8367 4,5 36.7347 4,5 37.7551 
15 7 44.898 7,4 44.898 4,5 35.7143 4,5 36.7347 
20 4 41.8367 7,4 40.8163 4,7 40.8163 4,5 34.6939 
25 4 47.9592 7,4 43.8776 4,5 41.8367 4,5 40.8163 
30 4 46.9388 7,4 44.898 4,5 45.9184 4,5 42.8571 

 


