EE662 Spring 2008 - Homework 2

April 15, 2008

1 Linear Discriminant Criterion Function

wSpw
wtS,w
compared to J(w) = w'Spw when selecting a hyperplane to separate the data

in two classes.

Here we investigate the use of the Fisher criterion function J(w) =

1.1 Theoretical Remarks

The two approaches for the choice of w can be formulated as two optimization
problems:

Problem1:Consider the optimization problem to maximize J(w) =
formulated as follows:

w!Spw
wtS,w?

maximize w!Spw
subject to w!S,w =1

The Lagrangian function is written as
L, = w'Spw — Aw'S,w
The necessary condition for the maxima is given by

L = Spw — ASyw =0

SBw =)\Sww
S tSpw = Aw
We use the fact that Spw o« ma — my and have the final solution:

w o< Syt (me —my)

Problem 2: Consider the optimization problem to maximize J(w) = w*Spw,
formulated as follows:

maximize w!Spw
subject to wiw = 1

The Lagrangian function is written as

L, = w'Spw — Mwlw
The necessary condition for the maxima is given by

‘ZL—waSBw—)\w:O

Spw = \w
We use the fact that Sgw o mo — my and have the final solution:
w x (mg —myq)

The solution for the Problem 2 implies that the decision hyperplane be-
tween the two classes will be orthogonal to the line between the classes’ means
regardless of their intra-class covariances. The solution for the Problem 1 im-
plies a decision hyperplane between two classes that is rotated from the direction
of the line between the means depending on the intra-class covariances.

In the subsection below we verify experimentally the consequences of the
different choices of J(w).

1.2 Fisher Discriminant Experiments

For this experiment we generate 100 points for each of two classes of normally
distributed data in the 2D space with g3 = (0 0)T,us = (1 1)7 and, ¥ = 5y =
I 4+ R, where R is a matrix that ajusts the correlation between the features for
each class by having the anti-diagonal elements equal to p and zeros in all the
other positions.

Figure 1 shows the decision surface for both criterion functions separat-
ing the two normally distributed 2D data. As we can see in Figure la, for
weakly correlated features (p = 0.1), there is little difference between using the
Fisher Discriminant and the separation hyperplane that is orthogonal to the
line between the means. As we can see in Figures 1b,1c and, 1d, the Fisher
discriminant does a much better job separating the classes as the correlation
between features increases (p = {0.2,0.5,0.95}) since it takes into consideration
the intra-class correlation structure between the features. This happens because
when the Fisher Criterion is used, the separation line originally orthogonal to
the line between the means is “rotated” by the matrix S, ! in order to better
separate the points between the classes.

A intuitive way to understand why the Fisher Criterion function J(w) =

gigig(l) is better than just using J(w) = w'Spw(2) is that the w that max-
imizes (2) is always parallel to the line between the classes’ means. Therefore,
when (2) is used as a criterion function, the data will always be projected in
the line between the means and a separation threshold is selected in order to
best separate the points. This works well if the 2 features are not correlated
or weakly correlated. The supperiority of the Fisher criterion (1) is observed
when the data exhibits high correlation between the features. In that case, only
projecting data over the line between the means is not enough to separate the
classes. Instead, the Fisher Criterion will project the data over a line “rotated”
from the line between the means. The rotation is done in order to maximize
the separation between the projected points from both classes.

-H
-2
-3
]] x
x
B L e e e A o N L e e e e e e e A A s e e
-2 -1 o 1 2 3 4 -3 -2 -1 o 1 2 3
.
N 1
3 . 3]
4 . 1 . ..
. q o
2 . 3 o
. | .
1 . o0 . 2 ® e’ x
e o 1
°® . .
1+ ° 4
e 0"l pe X x con
] « . 13 X o 1-| o
o o ° X X R - * eole
o LI I JPOSE 1 h=—tit By H %
e p PR f 08 X
] . X % x - ————— . B S OSEE AN
¢ « . x o AL B .
- x 1
x X X Kex] LI s X
q X LX)
. X x] XX
X X .
-2 x x x 1 %ﬂ
£% x % X
B x - X XX
- X al x ¥ x
H X X%
x | >><< X
]] «
e e e e B s e B e L - e e e e e S S B
-2 -1 0 1 2 3 4 5 -3 -2 -1 [1 2 3 4

Figure 1: Comparison of the decision lines using the Fisher criterion (J(w) =

%—Bi) and J(w) = w'Spw for bi-variated normally distributed data as we vary

the correlation between the 2 features of each class. The correlation coefficients
tested are: (a) p=0.1, (b) p=0.2, (¢c) p=10.5 and, (d)p = 0.95

2 Support Vector Machines and Artificial Neu-
ral Network Classifiers

2.1 Diabetes Data Set

For the experiments with Support Vector Machines and Artificial Neural Net-
work we use the Diabetes data set. Each sample point in this data set has 8
features and is classified as “1” (positive) or “0” (negative). All the features are
scaled to the [0,1] range. The whole dataset contains 768 samples.

In the experiments below we divide the dataset among training set, cross-
validation set and, testing set. The cross-validation set is used to evaluate the
performance of the classifier as we vary its parameters. Finally, once we believe
we have the best set of parameters, we test the classifier using the testing set
and compute the final classifier accuracy.

2.2 Support Vector Machines

All the experiments with Support Vector Machines performed in this paper used
the LIBSVM library (hitp://www.csie.ntu.edu.tw/ cjlin/libsvm/). The package
also provides a Python script called easy.py that allows us to easily experiment
with the SVM classifier. We provide the training set of 384 samples to the
script, which splits into training and cross-validation sets several times. The
test set with 384 samples is provided to finally evaluate the accuracy of the
SVM classifier.

All the experiments used the RBF (Radial Basis Function) kernel defined
as: K(z,y) = ellz=yll*,

The SVM classification also depends on the parameter C, which is the
Penalty Parameter of the Error Term. For very large values of C, no error
is allowed for the training samples, what can lead to overfitting. Conversely, if
small values of C are chosen, the classifier imprecision will increase. We perform
the following training strategy to select the combination of the parameters C
and v that gives us the best classification accuracy:

e Select values for C and -y and train the classifier using the training dataset;
e Evaluate the classifier performance using the cross-validation data;

e Repeat the procedure for other values of C and v until best accuracy is
found for the cross-validation test;

e Use the classifier with the values of C and v that give the best accuracy
over the cross-validation data to classify test samples.

Figure 2 shows the accuracy for the classifier for the parameters C and v
validaded over the cross-validation data. The best parameters selected were:
C=2048 and, y=0.000488. We used these parameters to test the testing set of
the data and the final accuracy verified is 80.5% (the classifier classifies correctly
309 out of 384 samples from the testing set).

diabetes, train,scale,scale ?5%2

74,5 ——
74

73,5 —
73

lg{gamma)

] . . .

1giCh

Figure 2: SVM Classifier accuracy as C and v are varied. The best accuracy
over the cross-validation data is achieved when C=2048 and y=0.000488.

2.3 Artificial Neural Network

All the experiments with Artificial Neural Network performed in this paper
used the FANN library(http://leenissen.dk/fann/). This library provide the
basic software infra-structure to build and train neural networks by specifying
the networks parameters and training protocols. We augmented the library to
perform experiments automatically as we especify them in a configuration file.

2.4 Artificial Neural Network Experiments

The main goal of the experiments is to determine the accuracy of the ANN
classification as we change some of the network parameters.

During all the experiments, the architecture of the network used is described
by the following parameters that remain fixed during the experiments:

e Number of layers: 3

e Number of output units: 2

e Number of input units: 8

e Hidden/Output unit activation functions: symmetric sigmoidal

e Training protocol: Batch backpropagation

e Maximum number of epochs: 30,000

A set of experiments is performed to test changes in the following parameters:
e Size of the training set: number of training samples

e Number of hidden units

e Maximum MSE Training Error accepted

2.4.1 Experiment 1 - Number of Samples vs. Number of Hidden
Units

We divided the dataset among training(384 samples), cross-validation(150 sam-
ples) and, test(234 samples) data sets. In Figure 3 we show the accuracy of
classification as we vary the number of training samples and the number of hid-
den units, verifying the accuracy on the cross-validation data. The maximum
MSE error over the training data is set to be 0.01.

As we can see in Figure 3, for the diabetes dataset experimented by us, the
accuracy improves as the number of training samples grows lage. However, no
accuracy degradation trend is seen as we increase the number of hidden neurons
for a fixed size of the training set, what contradicts the “rule of thumb” proposed
in DHS textbook that the number of hidden neurons should approximately the
size of the training sample set divided by 10.

The best accuracy (83%) is achieved when we choose the number of training
samples to be 120 and the number of hidden units to be 70. However the similar
accuracy is seem for 115 hidden units and 180 training data points.

Error rate (fractional)

200
E X
1 0.
150+ X X
] T .22
8 E >§0>32® X XX/ x %X x x
=) 0.243
£ T
£
S 100 0.267
k] 4 x\\x X x X0 x x x x\ %
[0}
S - 0.267
n i 0.29 0.29 0.2 026
0.267
0.29
—>L02§>< xx@xxx@x@x&xx@xx
50+
B 0.267
0.243
4 X X X X X X X X xX'x/x x X X X X
0 T T T T T T T T T T T T T T T T
0 50 100 150 200 250 300

Number of Hidden Nodes

Figure 3: Contour plot of the error rate of the Artificial Neural Network classifier
for different number of neurons in the hidden layer and the number of training
samples. Each of the points represent one experiment and the contour curves
represent the error rate level.

Error rate (fractional)

-0.0
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4 XXX XAHXAXXAHXAXXAHXAXXAXXXXXXXXXXXXXXXX

-0.57 XX XXX XXX XXXXXXXXXXXXXXXXXXXXX
7 1,032

] XXX X X (>0 4 XXX X KON X

5 L

T X XXX XXX XX KXXXXHAKK XXX KXKKKX XX KX

Q _

g 1'(}7 X X 7 X X X X<Zozgak X X X X X x x 10382

8 4 x X XX X

[}

> 1 x X X X X X W)X %

£ -1.51

‘s i X X € 9.822%0.32 FgoX X XX XX XX XX X X XX XX

o 2

T %&x@W&x@ﬁﬁxx@?@xxx XX X X X X X X X X

%_2& X X X X X X XXXXXOQBQ%ZXO%ZXQXXXXXXX

o . . .322

g 1 x &0.282<=0-28%| XX @ g X X X X X _522><><><><><:§<03<
B ><><><><><>< ><><><><><><><><><§}o.ma2><><
- 0.282

25 xxx@)xxxx@@%&xxx '@).%ZXXXX@.&’ZZX
B xxxx&ow&z 3220 x@gzx 0\ X ><0§<22><><>203<22><><£p322
] @g@%o%g?@ %zx XX 20322 %, X KX x (%9 %22
7 0282032 209)

-3.0 /2/\ \\\/\\}‘\}'\\QO-\\\\\
0 50 100 150 200 250 300

Number of hidden nodes

Figure 4: Contour plot of the error rate of the Artificial Neural Network classifier
for different values of acceptable MSE training error and number of hidden units.
Each of the points represent one experiment and the contour curves represent
the error rate level.

2.4.2 Experiment 2 - Number of Hidden Units vs. Maximum MSE
for the Training Set

We verify the accuracy of the Artificial Neural Network classifier as we vary the
maximum MSE training error accepted during the training phase and testing
the classifier with the testing set. The training set with 384 samples and a
testing of the same size were used in each trial of this experiment. The results
are shown in Figure 4. A large acceptable MSE training error results in a
imprecise classifier while a very small error rate leads to overfitting. According
to the plot in Figure 4 the accuracy of the classifier doesn’t change much as we
vary the number of hidden units. The best combination of parameters gives a
classification accuracy of 76%, when the number of hidden units is either 30 or
230 and the maximum MSE error is set to 0.13.

Finally we pick the best combination of the best parameters and test over a
test data set. The selected parameters are: 100 hidden units (arbitrarily chosen
since it doesn’t seem to affect our results), MSE error over training data equals
to 0.13. The number of samples is set to 384. The accuracy of the classification
obtained is 74% (284 samples classified correctly out of 384 samples in total).

2.4.3 Experiment Conclusions

The experiments clearly show that a optimal choice for the MSE error over the
training data, as well as a minimum number of samples is desirable for a good
classification performance. However, according to our experiments, the selection
of the number of hidden units is arbitrary since there is no observable trend in
terms of classification accuracy as the number of hidden units changes in either
of the experiments.

2.5 Comparison of Artificial Neural Network and Support
Vector Machines classifiers

In our experiments the Support Vector Machines showed supperior accuracy
when compared to the Artificial Neural Network . However, it’s hard to make
a final conclusion of what approach is better in the general case.

The SVM classifier directly searchs for a separation surface between the two
sets outputting the result of the classification. Conversely, the ANN aims to
learn a function based on the inputs and outputs real values with no direct
meaning and has to be thresholded, as opposed to the classification decision
itself given by the SVM.

Conceptually, SVMs are much simpler to understand than ANNs. When
working with SVMs, the user has to pick two parameters C and v that are
intuitive and appear to be related to how mixed the two classes are in the
data. ANNS, instead, deal with complicated training protocols and the choice
of the parameters that determine the network architecture, such as the number
of hidden layers or, yet, the number of hidden units in a 3-layer network. the
choice of such parameters is not obvious.

X 30080€ XI0ORMDE X 00X X
XIOK AMOCWK X X
X K XOOMEXX X X 20K K
XOHOXIOKHAOOK 0K X X
X ORX X00KX X XX N
X X XO000K XX X X X X X0 X]
XX 3 XX 3K XK
HX X 000K X X
X X mx x
X m xxx

X MOGCOKNCHMOC WK X X

X ORI K XK 30CK X

x

dimension 1 (scaled) dimension 1 (scaled)

(a) (b)

Figure 5: Layout of the two datasets used during the experiments: (a) synthetic
gaussian dataset and, (b) 2D diabetes dataset

3 Experiments with Parzen-Window, K-Nearest
Neighbor and, Nearest Neighbor Classifiers

This section presents the results of tests with the Parzen-Window, K-Nearest
Neighbor and Nearest Neighbor classifiers. We have implemented all the meth-
ods using the Scilab environment.

3.1 Data Sets

For the experiments in this section, the following datasets were used:

e Gaussian: artificially generated gaussian 2D dataset, contains 2 classes
with identical covariance matrices, separated by 1 standard deviation.The
layout of this dataset is shown in Figure 5a.

e Diabetes: the same dataset used in the previous section with data pro-
jected in the 2D space. The layout of this dataset is shown in Figure 5b.

3.2 Parzen Window Classifier

The parzen-window classifier was implemented with two kernels: hypercubic
and, gaussian.

Using these kernels we estimate the probability densities of the two classes in
the neighborhood of a sample point x. The classification is performed choosing
the class with highest probability in that region.

The performance comparison between the gaussian and the hypercubic ker-
nels is shown in Figure 6. The overall accuracy of the gaussian kernel is better
since there is no hard cut in the window as with the hypercubic kernel, resulting
in a better estimation of the probability density function in the neighborhood

10

Parzen Window

Figure 6: Performane of the Parzen Window classifier as the window size in-
creases for: (a)the guassian data and, (b) the 2D diabetes data.

1)

o rate (fractionl

Figure 7: Performane of the K-Nearest Neighbor classifier as the value of k
increases for: (a)the guassian data and, (b) the 2D diabetes data.

of a point. Since the hypercubic window implies in sampling data with fixed
hard cuts uniformly in the window region, large window sizes equally consider
a broad set of points in the estimation of the probability density decreasing the
classification accuracy. In experiments with both datasets the gaussian kernel
appears to be more robust, keeping its accuracy relatively higher than the cubic
kernel, even for very small or very large window sizes.

3.3 K-Nearest Neighbor Classifier

Here we verify the performance of the K-nearest neighbor classifier as the pa-
rameter K (number of neighbors considered) grows. Figure 7 shows the misclas-
sification rate as the value of K increases. As we can see from the experiments,
a reasonable value of K is desirable in order to have a good classification ac-

11

curacy. However, if K grows too large, the classifier considers points that are
too far, having its accuracy diminished. The best values of K found from our
experiments inspecting Figure 7 are K=23 for the gaussian synthetic data (error
rate of 14%) and K=18 to the diabetes data (error rate of 25%).

3.4 Nearest Neighbor Classifier

This classifier is a particular case of the K-Nearest Neighbor when k=1. The
separation surfaces induced by this classifier in the 2D Gaussian data is pre-
sented in Figure 8b. The surface for the diabetes data is presented in Figure 9b.
We make the observation that it could be the case that the application may
require speed while tolerating a higher percentage of misclassification. In that
case, using the Nearest Neighbor classifier can be a reasonable option since it
runs very fast. During our experiments, the error rate for the Nearest Neighbor
is 28% for the gaussian data (compared to 14% for the kNN when K=23) and
37% for the diabetes data (compared to 25% for the kNN when K=18).

3.5 Comparison of the Three Techniques

In order to compare all the three classification techniques we select the the pa-
rameters that made each of them perform best in the previous experiments.
Figure 10 shows the misclassification rate as the number of training samples
is varied for both datasets. As we can see from that figure, for both datasets
the classification accuracy increases (error decreases) as the number of train-
ing samples increases. However, the relative accuracy of each of the classifiers
remained the same: K-Nearest Neighbor is the most accurate, followed by the
Parzen-Window and finally the Nearest Neighbor.

In figure 8 we show the decision surfaces induced by the classifiers studied
in this section for the gaussian data. The same results for the diabetes data are
shown in Figure 9.

In order to draw the decision surfaces we make a grid over the space consid-
ered sampling points at intervals of 0.025 for de diabetes data and 0.2 for the
synthetic gaussian data and use a standard contour plot function to plot the
separation surfaces. As we can see in the surfaces of figures 8 and 9, the Nearest
Neighbor method leads to obvious overfitting. Moreover, we programmed the
Parzen-Window classifiers to choose arbitrarily the class 1 if no point falls in
the window. Therefore, regions with no points are mapped to class 1. In the k
nearest neighbor method, the arbitrary choice of a default class never happens
since the size of the window is always determined by the closest neighbor.

In general K-Nearest Neighbors presented better accuracy when compared
to Parzen-Window, being elected the best classifier among all the three studied
in this section. The reason is that, as discussed in DHS, the size of the “best”
window in the kNN is a function of the training data surrounding the testing
sample, rather than some arbitrary function of the overall samples as in the case
of the Parzen-Window. A reasonable value of K is desirable for the accuracy of
the classifier as verified in our experiments. However, a small value of K will

12

Kon (k=15) NN (k=1)

Figure 8: Decision surfaces for the classification methods using the synthetic
gaussian dataset: (a) K-Nearest Neighbor, (b) Nearest Neighbor, (¢) Parzen-
Window with Hypercubic kernel and, (d) Parzen-Window with Gaussian kernel

result in better computational performance. This last fact per se would make
a case for the Nearest Neighbor, since it’s very efficient and can be effective if
the points of the two classes are not mixed too much.

4 Conclusions

Throughout this report we made use of grid sampling and countor plots to better
understand the decision surfaces of several classifiers as well as to select the
best combination of parameters for the Support Vector Machines and Artificial
Neural Network classifiers. As a general conclusion, the usage of a classifier is
sensitive not only to the data layout but to the combination of the classifiers
parameters used. A good choice of those parameters must be made before
the classification of test data. Very complicated methods such as Artificial
Neural Network classifiers don’t seem to perform significantly better (in fact,
they performed worse in our experiments) than simple methods such as the K-
Nearest Neighbor classifiers. The engineer deploying classification methods in
real-world problems should give preference to simple methods with intelligible

13

Kan (k=18)

X oemeonmmORR0K | 00K X

X X0CREX X

800
XXX X% X|

3 XX 0 XX

00 o1 oz o3 o¢ o5 o5 or o8 05 10
(a)
E X
X% ¥ 15
wp xR L P
£ g ocor ok .
osf L X X % P
iixﬁxg:xxxx X
< o ¥ % o« X ¥ %
] X§xx,§x ¥
%
| B % 15
§§ ¥ (=N
o]
x X *
e
ds | os

(b)

Parzen (gaussian, h=0.5)

Figure 9: Decision surfaces for the classification methods using the diabetes
dataset: (a) K-Nearest Neighbor, (b) Nearest Neighbor, (¢) Parzen-Window
with Hypercubic kernel and, (d) Parzen-Window with Gaussian kernel

Error rate

022

0,18

016

014

Training size (# of points)

(a)

Eror rate

0.32-

0.30-

0,28

— kNN
—m

Parzen, Gaussian

Training size (# of points)

(b)

Figure 10: Performance comparison of the three classification methods consid-
ered on question 3 as the number of training samples for each class increases for
(a) the synthetic gaussian dataset and, (b) the diabetes dataset

14

theoretical properties such as Support Vector Machines and kNN as opposed to
the naive use of Artificial Neural Network classifiers.

15

ee662 hw2_ 1 a2.sce

| Sig , 1)
I/l generate n datatpoints from a Mixture of Gaussians with the means being columns
/l'in the matrix mu and the sigams being diagonal matrices with their diagonals
/l'in the colums of sig. Alpha is the likelihood of each sub-cluster.
1

/' mu-dxk
/l'sig—dxk
/[alpha - 1 x k matrix
((size (my (sig)
('mu and sig are not the same size!')
((muy 2) (,2))
('alpha must be a row vector with the same number of columns as mu'
((() 1) 0.0001)
('alpha should sum to one’)
[)I;
((c,2) 1
((my 1), n)
1
(1);
((cor);
('alpha should sum to one. This should never happen');
(1);
(ze (my 2)) _
('index out of bounds. This should never happen');

(1,'mn", mu(, ind), (sig (-, ind)));
(.1) i

(1 1 L
/I Generate n datatpoints from ¢ randomly—selected clases, where each class is a Mix
ture of Gaussians with the means being columns
/l in the matrix mu and the sigams being diagonal matrices with their diagonals
Il in the colums of sig. Alpha is the likelihood of each sub—cluster.
1
/[l Same as multigauss, except that mu,sig,and alpha are three—dimensional, with the
third
/I dimensions representing which class is being represented. Each class must
/I have the same number of clusters, but some clusters may have probability O if
/I desired.
1
/I Additionally, the true class is returned as the "last" dimension of each datapoin

/l E.g. for

1

/I'[21 39 22

/I [3.3 4129

hni1r 2

1

Il ¢ = size(mu,3) = # of classes

1

Imu-dxkxc

/lsig-dxkxc

/lalpha -1 x kxc mixture priors
(

('mu and sig are not the same size!")

Page 1

ee662 hw2_ 1 a2.sce
((my 2) (2))

('alpha must be a deep (Sd) row vector with the same number of columns as mu'

((,2) 1) 0.0001))
('alpha should sum to one’)

((my -3) _ ,
('must use 3rd dimension')
(my 3);
((my 1) 1, n);
1
(1);
()

((0)l (LR)l ([)1 1)1

[;]
/I Generate m datasets of multiple—class, multiple—dimension,
/I multiple—gaussian data.
1
/l The means are generated uniformly within "scale"
1
/I d = number of dimensions
/I k = number of clusters in each class
/I ¢ — number of classes
/I m — number of datasets
/I n — number of samples from each dataset.
/I scale - range of means
1
/[data - (d+1) x n x m —— the datapoints generated
/I the last row is the true clas of the generated point.
/[parameters — [p x k X ¢ x m] —— the parameters used to generate the data
/I where p is the number of parameters needed to specify a single cluster and is g

iven by
Z p = 2*d+1 (mean (d), sig (d), alpha (1))
2 1
(d-1,n,m;
(p.k,c,m
1
(’ ’)l
(d, k,c)
(1,k,c)
() (my)
() (1, my)

0
();
(:)
()
(50,'mn' [1;1][1 .9;.9 1]
(50, 'mn' [1; 1] 1 8:.8 1
[; (1,50) 2 (1, 50)]

Page 2

ee662 hw2_ 1 a2.sce Page 3

/[data - (d+1) x n —— the labeled datapoints
I/l omega - the fischer decision line.
/I omega*x = 0 is the equation of the line.

/[omega=S wr-1}
I x_0=wAT (m_1+m_2)
I1'S_w =\sum_{y \in class} (y-m_i)(y_i-m_)"T

/I Assume 2 classes.
1 2,

(:
/I was function plotprettystuff(data,omega)
/I Given the fisher projection line omega,
/I plot the decision surface acording to omega
/I and according to (m2-m1)

/I Assume 2 classes.

, o), di(z,), o)
(2,), bx)
// Ilne between means
2,),%) o
) 2; /I midpoint
), my2,), *)
hatever is input

(2); (1)

(
(
m
)1

(
/1= [n(11
Il plot(ll((l

(oL

/lomega
[

—

1

]
), 12(2,), '9—")
[I;
(
[(2); (1)]
3 ;
3

[I
(12(1,), 12(2,), 'r=="")
"/home/yoder;j" ;
(0, "/Desktop/tmp.eps” , 1);

P wwp sk ..\.Bl—\H

0

hw662.c Page 1

/*
Fast Artificial Neural Network Library (fann)
Copyright (C) 2003 Steffen Nissen (lukesky@diku.dk)

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY:; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more detalils.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*

#include <stdio.h>
#include "fann.h"

#define isone(a) (fabs(a- 1.0)< 0.001)
typedef struct {
int num_neurons_hidden;
float desired_error;
int max_epochs;
int epochs_between_reports;
int activation_function_hidden;
int activation_function_output;
char *trainfile;
char *testfile;
} experiment;

void print_experiment_line(experiment config);

experiment *get_experiment_sequence(char *filename, int *num);
void read_experiment_line(experiment *config, FILE *file);
int get_num_experiments(FILE *file);
experiment *get_experiment_sequence(char *filename, int *num)
FILE *fileptr;
int i
experiment *ptr;
it ((fileptr=fopen (filename, ")== 0)
*num = 0;
return 0;
}
else
{ _ :
printf ("get_num_experiments \n");
*num = get_num_experiments(fileptr);
printf ("allocate mem (exp = %09 \n " *num);
ptr = (experiment *) malloc ((*num)* sizeof (experiment));

for (i= 0;i<*num;i++)

printf ("reading %d\n" ,i);
read_experiment_line (&ptr[i], fileptr);

}
fclose (fileptr);

return ptr;
}
}
int get_num_experiments(FILE *file)
{
int number;
fscanf(file, " %d\n" ,&number);

return number;

hw662.c Page 2

void read_experiment_line(experiment *config, FILE *file)

{
config—>trainfile = (char *)malloc (20* sizeof (char));
config—>testfile = (char *) malloc (20* sizeof (char));
fscanf (file, " %d %f %d %d %d %d %s %s\n",

&config—>num_neurons_hidden,
&config—>desired_error,
&config—>max_epochs,
&config—>epochs_between_reports,
&config—>activation_function_hidden,
&config—>activation_function_output,
config—>trainfile,
config—>testfile);

return ;

}
void print_experiment_line(experiment config)

return ;

}

int ann_experiment_driver (int num_layers,
int num_neurons_hidden,
float desired_error,
int max_epochs,
int epochs_between_reports,
int activation_function_hidden,
int activation_function_output,
char *trainfile,
char *testfile,
FILE *outputptr)

/[const unsigned int num_layers = 3;
/lconst unsigned int num_neurons_hidden = 32;
/Iconst float desired_error = (const float) 0.0001;
/[const unsigned int max_epochs = 300;
/lconst unsigned int epochs_between_reports = 10;
1
struct fann *ann;
struct fann_train_data *train_data, *test_data,
long ncorrect= 0, nincorrect= 0;
fann_type *expected_output, *actual_output;
unsigned int i= O;
fprintf(outputptr, "Creating network. \n");
train_data = fann_read_train_from_file(trainfile);
ann = fann_create_standard(num_layers,
train_data—>num_input, num_neurons_hidden, train_data->num_o
utput);
fprintf(outputptr, "Training network. \n");

fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC_STEPWISE);
fann_set_activation_function_output(ann, FANN_SIGMOID_STEPWISE);

/lfann_set_training_algorithm(ann, FANN_TRAIN_INCREMENTAL);

fann_train_on_data(ann, train_data, max_epochs, epochs_between_reports, desi
red_error);

fprintf(outputptr, "Testing network. \n");
test_data = fann_read_train_from_file(testfile);

fann_reset_MSE(ann);
for (i= O;i<fann_length_train_data(test_data); i++)

fann_test(ann, test_data—>input[i], test_data—>output[i]);

actual_output = fann_run(ann, test_data—>input[i]);

hw662.c

tual_output[

put[OD)I|
((actual_output[
_output] 1)< 0) && lisone(expected_output] 0]))]
{
printf (
ncorrect++;
}
else
{ _ :
printf(“"incorrect!
nincorrect++;
}
}
fprintf(outputptr, "MSE error on test data:
fprintf(outputptr, "Correct outputs:
fprintf(outputptr, "Incorrect outputs:
fprintf(outputptr, "Saving network. \n");
fprintf(outputptr, "Cleaning up. \n");

}
int

{

Page 3

expected_output = test_data—>outpult]i];

printf ("actual_output[0]=
0], expected_output[
if (((actual_output[

fann_destroy_train(train_data);
fann_destroy_train(test_data);
fann_destroy(ann);

return 0;

main (int *argc, char **argv)
experiment *exp_vector;

int num_experiments;

int i

FILE *outputptr;
outputptr = fopen (argv]| 2], "w");
exp_vector = get_experiment_sequence (argv[

fprintf (outputptr,
for (i= 0; i< num_experiments; i++)
fprintf (outputptr, "Experiment

fprintf (outputptr,

exp_vector[i].num_neurons_hidden,
exp_vector][i].desired_error,
exp_vector[i].max_epochs,
exp_vector[i].epochs_between_reports,
exp_vector|i].activation_function_hidden,
exp_vector]i].activation_function_output,
exp_vector]i].trainfile,
exp_vector]i].testfile);
ann_experiment_driver (3,
exp_vector[i].num_neurons_hidden,
exp_vector][i].desired_error,
exp_vector[i].max_epochs,
exp_vector[i].epochs_between_reports,
exp_vector]i].activation_function_hidden,
exp_vector]i].activation_function_output,
exp_vector]i].trainfile,
exp_vector]i].testfile,
outputptr);

%f, expected_output[0]=
0], isone(expected_output] on);
0] - actual_output[

"correct!

"The num of experiments is

%f, isone= %d\n", ac
1 > 0 && isone(expected_out

0] - actual

\n");

\n");

%f\n ", fann_get_MSE(ann));

%d\n", ncorrect);
%d\n", nincorrect);

1], &num_experiments);

%d\n" , num_experiments);

)

" %d %f %d %d %d %d %s %s\n",

hw662.c Page 4

fclose (outputptr);
return O;

hw2_questi on3_anon. sci Page 1
/I compare parzen window and kNN methods

[data_train , data_test , label train , label test] create_gaussian_data_set
(meanl, mean2, covl, cov2, ntrain , ntest)
classl =grand (ntrain , "mn", meanl, covl);
class2 =grand (ntrain , "mn", mean2, cov2);
label_train [ones (1, ntrain), ones(1, ntrain) *2];
testl =grand (ntest ,"mn", meanl, covl);
test2 =grand (ntest ,"mn", mean2, cov2);

label_test [ones (1, ntest), ones(1,ntest)*2];
[data_train] merge_from_two_classes (classl , class2 , label train);
[data_test] merge_from_two_classes (testl , test2 , label test);
[classl , class2] convert_from_labeled_dat (data , label)
classl data (:, label 1);
class2 data (:, label 2);
plot_classes (data, label
[classl , class2] convert_from_labeled_dat (data , label)

plot (classl (1,), classl (2,), 'bx")
plot (class2 (1,), class2 (2,), 'x');

y load_diabetes_file (filename)
prefix ''homelyoderj/Desktop/
path prefix +filename
[fp, err] mopen(path , 't);
(err)
printf ('error! Could not open'’ path -"\n");

disp (error);

y mfscant (1, fp , '%f %f %f %f');
mclose (fp);

[data_train , data_test , label train , label test] load_diabetes (filename)
raw_train load_diabetes_file ('diabetes2.train’);
raw_test load_diabetes_file ('diabetes2.test');
data_train (raw_train (,1 2)) ;
label_train (raw train (- ,4) 1) ;
data_test (raw test (,1 2) ;
label_test (raw test (,4) 1) ;

test_parzen_and_knn 0
/lcreate 2D the datasets
llcov = eye (2,2);
/Imeanl1=[0 O]
//mean2=[1.5 1.5]'
/[[data_train, data_test, label_train, label_test] = create_gaussian_data_set(meanl,
mean2, cov, cov, 100, 50);

[data_train , data test , label train , label test] load_diabetes ();
/Iplot data

[ffigure;

clf

plot_classes (data_train , label_train);

xlabel ('dimension 1 (scaled)')

ylabel ('dimension 2 (scaled)')

/Ixs2eps(0,"anon/xy_synth.eps",1);

xs2eps (0, "anon/xy_diabetes.eps” , 1);

1

[Itest parzen window for several values of h

hw2_questi on3_anon. sci
/I (for both kernels)

1

hs [0.1 0.2 05 1 2 4]

11%% Plot 1

error_rates_cubic ones (hs);
i =1: length (hs)
[predicted_labels] test parzen_window_class (hs(i), ‘eubic' , data train
t, label train , label test)
[errorRate , correctClass , wrongClass | testResults (label_test , predicted_labels
error_rates_cubic (1) errorRate
/lfigure
clf
plot (hs, error_rates cubic N O
title ("Parzen Window"
xlabel ("Size of window")
ylabel ("Error rate (fractional)")
xs2eps (0, "anon/parzen_diabetes.eps" , 1);
error_rates_gaussian ones (hs);
i =1: length (hs)
[predicted_labels] test_parzen_window_class (hs(1), ‘'gaussian' , data train
test , label train , label test)
[errorRate , correctClass , wrongClass] testResults (label_test , predicted_labels
error_rates_gaussian (1) errorRate
plot (hs, error_rates_gaussian L),
legend ('hypercubic kernel' , 'gaussian kernel');

/%% Plot 2

I

/Itest KNN for several values of k
/I (for both kernels)

1

k-1 50;

error_rates_knn ones (k);

i =1: length (k)

[predicted_labels] knn(k(i), data train , label_train , data_test);
[errorRate , correctClass , wrongClass] testResults (label_test , predicted_labels
error_rates_knn (1) errorRate

clf

plot (k, error_rates knn),

title ('KNN");

xlabel ("k")

ylabel ("Error rate (fractional)"

xs2eps (0, "anon/knn_diabetes.eps" , 1);

1

/I From here we select the best k for the knn
/[and the best h and kernel f for the parzen window

1

/[[data_train, data_test, label_train, label_test] = load_diabetes();
k-19;

h-0.5;

parzen_kernel_type "gaussian”

sizes [30 10 100];

error_size_parzen ones (sizes);

error_size_knn ones (sizes);

error_size_nn ones (sizes);

i =1: length (sizes)
/I [data_train, garbagel, label_train, garbage2] = create_gaussian_data_set(meanl,
meanz2, cov, cov, sizes(i), 50);

[data_train , garbagel , label_train , Qgarbage?] load_diabetes ();
data_train data_train (:, 1:sizes (i));
label_train label_train (,1 sizes (1))

/[create_gaussian_data_set(meanl, mean2, cov, cov, sizes(i), 50);

[predicted_labels] knn (k, data_train , label_train , data_test);

Page 2

data_tes

):

, data_

hw2_questi on3_anon. sci Page 3

[errorRate , correctClass , wrongClass] testResults (label_test , predicted_labels);
error_size_knn (1) errorRate ;
[predicted_labels] knn (1, data_train , label_train , data_test);
[errorRate , correctClass , wrongClass] testResults (label test , predicted_labels);
error_size nn (i) errorRate
[predicted_labels] test_parzen_window_class (h, parzen_kernel_type , data train , d
ata test , label train , label test)
[errorRate , correctClass , wrongClass | testResults (label_test , predicted_labels);
error_size_parzen (1) errorRate ;
clf
plot (sizes , error_size knn , ‘b=);
plot (sizes , error_size nn ;=)
plot (sizes , error_size parzen . k=");
legend ("KNN", "NN", "Parzen, Gaussian")
xlabel ("Training size (# of points)");
ylabel ("Error rate");
xs2eps (0, "anon/train_size_diabetes.eps" , 1);
compute_decision_surf 0

llcov = eye (2,2);

/Imeanl1=[0 0]

/Imean2=[1.5 1.5]'

/l[data_train, data_test, label_train, label_test] = create_gaussian_data_set(meanl,
meanz2, cov, cov, 100, 50);

[data_train , data_test , label train , label test] load_diabetes ();

1[xx,yy] = meshgrid(-3:.2:5);
[xx, yy] meshgrid (0 .025 1);

grid_points [ocC) sy L

h-0.2;

[grid_labels] test_parzen_window_class (h, ‘cubic' , data train , grid points , labe
| train , 2*ones(grid_points (1, :)));

clf

plot_classes (data_train , label train);

grid_labels2 matrix (grid_labels , size (xx));

contour (xx(1,:), yy(:,1), grid_labels2 [1.5 10]);
titte ('Parzen (cubic, h=0.2)'

xs2eps (0, "anon/parzen_0_2_cubic_surface_diabetes.eps" , 1);
h-05;
[grid_labels] test_parzen_window_class (h, 'gaussian' , data_train , grid_points
abel train , 2*ones(grid_points (1, :));
clf
plot_classes (data_train , label train);
grid_labels2 matrix (grid_labels , Size (xx));
contour (xx(1,:), yy(:,1), grid_labels2 [1.5 10));
tile ('Parzen (gaussian, h=0.5)')
xs2eps (0, "anon/parzen_0_5 surface_diabetes.eps” , 1);
h=2;
[grid_labels] test_parzen_window_class (h, 'gaussian' , data_train , grid_points
abel_train , 2*ones(grid_points (1,)));
clf
plot_classes (data_train , label train);
grid_labels2 matrix (grid_labels , Size (xx));

contour (xx(1,:), yy(:,1), grid_labels2 [1.5 10));
titte ('Parzen (gaussian, h=2)'
xs2eps (0, "anon/Desktop/parzen_2_surface_diabetes.eps” , 1);

hw2_questi on3_anon. sci Page 4

k- 18;
[grid_labels] knn (k, data_train , label_train , grid_points);
clf
plot_classes (data_train , label_train);
grid_labels2 matrix (grid_labels , Size (xx));
contour (xx(1,:), yy(:,1), grid_labels2 1.5, 0 10]);
title ('Knn (k=18)')
xs2eps (0, "anon/knn_surface_diabetes.eps” , 1);
[grid_labels] knn (1, data_train , label_train , grid_points);
clf
plot classes (data train , label train);
grid_labels2 matrix (grid_labels , Size (xx));

contour (xx(1,:), yy(:,1), grid_labels2 [1.5 10));
title ('NN (k=1)")
xs2eps (0, "anon/nn_surface_diabetes.eps" , 1);

parzen_window.sci Page 1

function [yl = hypercubic_kernel (u)

[rows, cols]=size (u);
y=double (and(abs(u) < 1/2,'));
/ly=double(sum(abs(u) < 1/2,'r") == rows)

endfunction

function [yl = gaussian_kernel (u)

[d,n] = size (u);
y=zeros (1, n);
for i=1:n
y(i) = gaussian (u(:,1));
end

endfunction

function [y] = gaussian (u)

u=u(:);
d = length (u);
y = exp(=(u™ u)/2)/((2*%pi)"(d/ 2));

endfunction

function [pn] = gauss_parzen_window_dens (h, u, V)

[d, n] = size (u);

hn=h/ sqrt (n);

phi = gaussian_kernel ((u - v*ones(1,n)) /hn)
pn = sum(phi)/ (hn);

endfunction

function [pn] = cubic_parzen_window_dens (h, u, v)

[d, n] = size (u);

V = h”d;

phi = hypercubic_kernel ((u = v*ones (1, n)) /h)
pn = sum(phi)/ (n*V);

endfunction

function [pn] = parzen_window_estimate (h, u, v, kernel _type)

if (kernel_type == 'gaussian’)
[pn] = gauss_parzen_window_dens (h, u, v)
else
if (kernel_type == ‘cubic')
[pn] = cubic_parzen_window_dens (h, u,v)
end
end

endfunction

function [class , pl, p2]=runl ()

cov =eye (2, 2);
meanl=[2 2]';
mean2=[0 0]";
classl =grand (500, 'mn' , meanl, cov);
class2 =grand (500, 'mn' , mean2, cov);

[class , pl, p2] = clickable_experiment (classl , class2 , ‘cubic');

endfunction

function [class , pl, p2] = clickable_experiment (classl , class2 , kernel_type)
clf

plot (classl (1,:), classl (2,:), 'bx");
plot (class2 (1,:), class2 (2,:), X');

legend ('classl’ | 'class2');
v = xclick ();
v =v(2:3)";
plot (v(1), v(2), 'k)
[class , pl, p2] = parzen_window_classifier (1,classl , class2 , v, kernel_type);
endfunction
function [class , pl, p2]=parzen_window_classifier (h, classl , class2 , v, kernel_type
)
pl = parzen_window_estimate (h, classl , v, kernel_type);
p2 = parzen_window_estimate (h, class2 , v, kernel_type);
if (pl >= p2
class = 1;
else
class = 2;

end

parzen_window.sci Page 2

endfunction

function [classl , class2] = convert_from_labeled_dat (data , label)
classl = data (:, label == 1);
class2 = data (:, label == 2);

endfunction

function [data] = merge from_two_classes (classl , class2 , label)
[d1, nl]= size (classl);
[d2, n2]= size (class2);

data = zeros (dl1, nl+n2);

data (:,label ==1) = classl ;
data (:,label ==2) = class2 ;
endfunction
function [predicted_labels] = test parzen_window_class (h, kernel_type , data_train , d
ata_test , label train , label_test)
[classl_train , class2_train] = convert_from_labeled_dat (data_train , label_train);
[d, n] = size (label test);
predicted_labels = zeros (1, n);
for i=1:n
[class , pl, p2] = parzen_window_classifier (h, classl_train , Class2_train , data_
test (:,i1), Kkernel_type);
predicted_labels (:,1) = class (:);
end

endfunction

knn_anon. sci

[] (k, :
/I Inspired by the MIT version.
/I Ouput variables initialisation (not found in input variables)
1
Il Input:
/' k =1 x 1 - number of neighbors to consider
/I TrainPattern — d x N — Training vectors
/I TrainLabel — 1 x N — Labels of the classes. Values 1 and 2
I/l TestPattern — d x numTests — Testing vectors
1
Il ...where:
/I d — the number of dimensions
1
/I Output:
/I PredictedLabels — 1 x numTests
1
/I Please note the differences from the MIT version of the script:
/[* This is for scilab, not matlab
/[+ 1 didn't translate the movie code
/I + mtlb_XXX functions were automatically translated by scilab
/I * | use transposed inputs when compared with MIT.
/[e.g. MyTrainPattern = MITTrainPattern'
/I this makes vector operations more natural for me
/[* Some of the code is a bit more vectorized now.

/[* The best class is computed by voting within the k nearest neighbors.

/I In acase of a tie, | assume class1.

(1, (» 2));
/I Display mode
(0);
/I Display warning for floating point exception
(1);

/IK-Nearest-Neighbor—-Classifier MatLab Code

/lk—nearest neighbor classifier
/IDetermines distances of all TrainPattern points from TestPattern points
//Outputs TrainLabel associated with nearest TrainPattern point
[:] (();
40;
((2)

('Must have at least as many training points as k, points='
,2) k=);

/' L.19: Matlab function moviein not yet converted, original calling sequence use
d

/IM = moviein(K);
1 (1,1)
(();
(1,2);

(1, N);
/lcreates specified space for distance column vector

Il set(gca(),"auto_clear","on");
Il llreleases previous plot

I/l plot(TestPattern(1,numTest), TestPattern(2,numTest),"k*");
/I I/begins and holds new plot

/I title("Train Pattern Scatter Plot")

Page 1

knn_anon. sci Page 2
/I set(gca(),"auto_clear","off")
1 /lcreates distance column vector with N rows
(1) (7)7
(1,1) ()
Il Il Select the two classes for ploting.
/I Trainl = TrainPattern(;,TrainLabel(1,:)<.5);
/I Train2 = TrainPattern(:,~(TrainLabel(1,:)<.5));
/I set(gca(),"auto_clear","off");
/I plot(Train1(1,:),Train1(2,:),"bx");
/I plot(Train2(1,:),Train2(2,:),"rx");
/I legend("test point","Class 0","Class 1");
[:] (d); Il decreasing—order sort
/lclindx = mtlb_fliplr(clindx);
/I original translation: gsort
/I original matlab command: sortrows
/ldetermines closest distances and their indices
i (1, N);
/I CLTrainLabels(1,1:N)=TrainLabel(clindx);
((1 Kk)); /ICLTrainLabels(1,1:(k(1,1)));
/[displays """kth"™"" closest labels
/I disp (Closest_Train_Labels)
/I PredictedLabels = cell();
/INCLTL = k;
(((1)) 2)
(1,) L
(1,) 2
/I halt
/I pause
/I visualizeResults(TrainPattern, TrainLabel, TestPattern, TestLabel,PredictedLabels);
("Done!")
. . . . 1 . 1 o . L L)
I/l Plot Training data and Testing data with both true & predicted Classifications
/I Computer number of correct and incorrect classifications.
Il Select the two classes for ploting.
: (1,) 15);
(.« (1,) 15));
((1,) 15),
((1,) 1.5));
(), "auto_clear" , "off");
((1,7), (2,) "bx"),
((1,), (2,), "rx"),
((1), (2,) "bo");
((1,) (2,), "ro")
(. (1,) 15);
: (1,) 15));
((), "auto_clear" , "off");
(1,), (2,) "0),
(1,), (2,), "r)
("Train Class 0" , "Train Class 1" , "Pred Class 0" , "Pred Class 1" , "True Class 0
", "True Class 1")i

(
/Negend("Train Class 0","Train Class 1","Test Class 0","Test Class 1");

knn_anon. sci Page 3

/I Count errors

() (
("Test and Pred Label Must be the same size!")

/I disp("Correct Class")
/I disp(correctClass)
/I disp("Wrong Class")
/I disp(wrongClass)

/I disp("Error Rate")

/I disp(errorRate)

hw2_questi on3_anon. sci Page 1
/I compare parzen window and kNN methods

[data_train , data_test , label train , label test] create_gaussian_data_set
(meanl, mean2, covl, cov2, ntrain , ntest)
classl =grand (ntrain , "mn", meanl, covl);
class2 =grand (ntrain , "mn", mean2, cov2);
label_train [ones (1, ntrain), ones(1, ntrain) *2];
testl =grand (ntest ,"mn", meanl, covl);
test2 =grand (ntest ,"mn", mean2, cov2);

label_test [ones (1, ntest), ones(1,ntest)*2];
[data_train] merge_from_two_classes (classl , class2 , label train);
[data_test] merge_from_two_classes (testl , test2 , label test);
[classl , class2] convert_from_labeled_dat (data , label)
classl data (:, label 1);
class2 data (:, label 2);
plot_classes (data, label
[classl , class2] convert_from_labeled_dat (data , label)

plot (classl (1,), classl (2,), 'bx")
plot (class2 (1,), class2 (2,), 'x');

y load_diabetes_file (filename)
prefix ''homelyoderj/Desktop/
path prefix +filename
[fp, err] mopen(path , 't);
(err)
printf ('error! Could not open'’ path -"\n");

disp (error);

y mfscant (1, fp , '%f %f %f %f');
mclose (fp);

[data_train , data_test , label train , label test] load_diabetes (filename)
raw_train load_diabetes_file ('diabetes2.train’);
raw_test load_diabetes_file ('diabetes2.test');
data_train (raw_train (,1 2)) ;
label_train (raw train (- ,4) 1) ;
data_test (raw test (,1 2) ;
label_test (raw test (,4) 1) ;

test_parzen_and_knn 0
/lcreate 2D the datasets
llcov = eye (2,2);
/Imeanl1=[0 O]
//mean2=[1.5 1.5]'
/[[data_train, data_test, label_train, label_test] = create_gaussian_data_set(meanl,
mean2, cov, cov, 100, 50);

[data_train , data test , label train , label test] load_diabetes ();
/Iplot data

[ffigure;

clf

plot_classes (data_train , label_train);

xlabel ('dimension 1 (scaled)')

ylabel ('dimension 2 (scaled)')

/Ixs2eps(0,"anon/xy_synth.eps",1);

xs2eps (0, "anon/xy_diabetes.eps” , 1);

1

[Itest parzen window for several values of h

hw2_questi on3_anon. sci
/I (for both kernels)

1

hs [0.1 0.2 05 1 2 4]

11%% Plot 1

error_rates_cubic ones (hs);
i =1: length (hs)
[predicted_labels] test parzen_window_class (hs(i), ‘eubic' , data train
t, label train , label test)
[errorRate , correctClass , wrongClass | testResults (label_test , predicted_labels
error_rates_cubic (1) errorRate
/lfigure
clf
plot (hs, error_rates cubic N O
title ("Parzen Window"
xlabel ("Size of window")
ylabel ("Error rate (fractional)")
xs2eps (0, "anon/parzen_diabetes.eps" , 1);
error_rates_gaussian ones (hs);
i =1: length (hs)
[predicted_labels] test_parzen_window_class (hs(1), ‘'gaussian' , data train
test , label train , label test)
[errorRate , correctClass , wrongClass] testResults (label_test , predicted_labels
error_rates_gaussian (1) errorRate
plot (hs, error_rates_gaussian L),
legend ('hypercubic kernel' , 'gaussian kernel');

/%% Plot 2

I

/Itest KNN for several values of k
/I (for both kernels)

1

k-1 50;

error_rates_knn ones (k);

i =1: length (k)

[predicted_labels] knn(k(i), data train , label_train , data_test);
[errorRate , correctClass , wrongClass] testResults (label_test , predicted_labels
error_rates_knn (1) errorRate

clf

plot (k, error_rates knn),

title ('KNN");

xlabel ("k")

ylabel ("Error rate (fractional)"

xs2eps (0, "anon/knn_diabetes.eps" , 1);

1

/I From here we select the best k for the knn
/[and the best h and kernel f for the parzen window

1

/[[data_train, data_test, label_train, label_test] = load_diabetes();
k-19;

h-0.5;

parzen_kernel_type "gaussian”

sizes [30 10 100];

error_size_parzen ones (sizes);

error_size_knn ones (sizes);

error_size_nn ones (sizes);

i =1: length (sizes)
/I [data_train, garbagel, label_train, garbage2] = create_gaussian_data_set(meanl,
meanz2, cov, cov, sizes(i), 50);

[data_train , garbagel , label_train , Qgarbage?] load_diabetes ();
data_train data_train (:, 1:sizes (i));
label_train label_train (,1 sizes (1))

/[create_gaussian_data_set(meanl, mean2, cov, cov, sizes(i), 50);

[predicted_labels] knn (k, data_train , label_train , data_test);

Page 2

data_tes

):

, data_

hw2_questi on3_anon. sci Page 3

[errorRate , correctClass , wrongClass] testResults (label_test , predicted_labels);
error_size_knn (1) errorRate ;
[predicted_labels] knn (1, data_train , label_train , data_test);
[errorRate , correctClass , wrongClass] testResults (label test , predicted_labels);
error_size nn (i) errorRate
[predicted_labels] test_parzen_window_class (h, parzen_kernel_type , data train , d
ata test , label train , label test)
[errorRate , correctClass , wrongClass | testResults (label_test , predicted_labels);
error_size_parzen (1) errorRate ;
clf
plot (sizes , error_size knn , ‘b=);
plot (sizes , error_size nn ;=)
plot (sizes , error_size parzen . k=");
legend ("KNN", "NN", "Parzen, Gaussian")
xlabel ("Training size (# of points)");
ylabel ("Error rate");
xs2eps (0, "anon/train_size_diabetes.eps" , 1);
compute_decision_surf 0

llcov = eye (2,2);

/Imeanl1=[0 0]

/Imean2=[1.5 1.5]'

/l[data_train, data_test, label_train, label_test] = create_gaussian_data_set(meanl,
meanz2, cov, cov, 100, 50);

[data_train , data_test , label train , label test] load_diabetes ();

1[xx,yy] = meshgrid(-3:.2:5);
[xx, yy] meshgrid (0 .025 1);

grid_points [ocC) sy L

h-0.2;

[grid_labels] test_parzen_window_class (h, ‘cubic' , data train , grid points , labe
| train , 2*ones(grid_points (1, :)));

clf

plot_classes (data_train , label train);

grid_labels2 matrix (grid_labels , size (xx));

contour (xx(1,:), yy(:,1), grid_labels2 [1.5 10]);
titte ('Parzen (cubic, h=0.2)'

xs2eps (0, "anon/parzen_0_2_cubic_surface_diabetes.eps" , 1);
h-05;
[grid_labels] test_parzen_window_class (h, 'gaussian' , data_train , grid_points
abel train , 2*ones(grid_points (1, :));
clf
plot_classes (data_train , label train);
grid_labels2 matrix (grid_labels , Size (xx));
contour (xx(1,:), yy(:,1), grid_labels2 [1.5 10));
tile ('Parzen (gaussian, h=0.5)')
xs2eps (0, "anon/parzen_0_5 surface_diabetes.eps” , 1);
h=2;
[grid_labels] test_parzen_window_class (h, 'gaussian' , data_train , grid_points
abel_train , 2*ones(grid_points (1,)));
clf
plot_classes (data_train , label train);
grid_labels2 matrix (grid_labels , Size (xx));

contour (xx(1,:), yy(:,1), grid_labels2 [1.5 10));
titte ('Parzen (gaussian, h=2)'
xs2eps (0, "anon/Desktop/parzen_2_surface_diabetes.eps” , 1);

hw2_questi on3_anon. sci Page 4

k- 18;
[grid_labels] knn (k, data_train , label_train , grid_points);
clf
plot_classes (data_train , label_train);
grid_labels2 matrix (grid_labels , Size (xx));
contour (xx(1,:), yy(:,1), grid_labels2 1.5, 0 10]);
title ('Knn (k=18)')
xs2eps (0, "anon/knn_surface_diabetes.eps” , 1);
[grid_labels] knn (1, data_train , label_train , grid_points);
clf
plot classes (data train , label train);
grid_labels2 matrix (grid_labels , Size (xx));

contour (xx(1,:), yy(:,1), grid_labels2 [1.5 10));
title ('NN (k=1)")
xs2eps (0, "anon/nn_surface_diabetes.eps" , 1);

