AC-1 August 2016 QE

1. Without performing any block-diagram reduction,

Figure 1: Problem 1 block diagram.
(a) determine the feedforward transfer function.

Feedforward transfer function $T F_{F F}=\frac{C(s)}{E(s)}$.

$$
C(s)=\frac{E(s)}{s(s+2)} \Rightarrow \frac{C(s)}{E(s)}=\frac{1}{s(s+2)}
$$

(b) determine the open-loop transfer function.

Open-loop transfer function $T F_{O L}=\frac{B(s)}{E(s)}$.

$$
B(s)=\frac{2 E(s)}{s}-\frac{3 E(s)}{s(s+2)}=E(s)\left(\frac{2}{s}-\frac{3}{s(s+2)}\right) \Rightarrow \frac{B(s)}{E(s)}=\frac{2}{s}-\frac{3}{s(s+2)}=\frac{2 s+1}{s(s+2)}
$$

(c) determine the closed-loop transfer function.

Closed-loop transfer function

$$
T F_{C L}=\frac{C(s)}{R(s)}=\frac{T F_{F F}}{1+T F_{O L}}=\frac{\frac{1}{s(s+2)}}{1+\frac{2 s+1}{s(s+2)}}=\frac{1}{s^{2}+4 s+1}
$$

2. Given the RLC circuit shown
(a) Obtain a block diagram of the system with $E_{i n}(s)$ as input and $I_{L}(s)$ as output.

Figure 2: Problem 2 block diagram.

Figure 3: Problem 2 signal flow graph.
(b) Find the overall transfer function $\frac{I_{L}(s)}{E_{i n}(s)}$ from your block diagram using Mason's Gain Formula. Express the transfer function in terms of R, L, C components only.

Mason's Gain Formula:

$$
\frac{C(s)}{R(s)}=\frac{\sum_{k} P_{k} \Delta_{k}}{\Delta}
$$

where P_{k} is the path gain of the k th path, $\Delta=1-\sum_{i} L_{i}+\sum_{i, j} L_{i} L_{j}-\cdots$, and $\Delta_{k}=1-$ (non-touching loops).

$$
\begin{gathered}
P_{1}=\frac{R C s}{L s}=\frac{R C}{L}, \quad \Delta_{1}=1, \quad L_{1}=-R C s, \quad L_{2}=-\frac{R}{L s} \\
\Delta=1-\left(L_{1}+L_{2}\right)=1+R C s+\frac{R}{L s} \\
\frac{I_{L}(s)}{E_{i n}(s)}=\frac{P_{1} \Delta_{1}}{\Delta}=\frac{\frac{R C}{L}}{1+R C s+\frac{R}{L s}}=\frac{R C s}{R L C s^{2}+L s+R}
\end{gathered}
$$

3. Given a negative unity feedback control system with compensator $G_{c}(s)$ and plant $G(s)=\frac{9}{(s+1)(s+3)}$.

It is desirable to place the dominant closed-loop poles of the compensated system at $s_{1}^{*}, s_{2}^{*}=-3 \pm j 4$.
(a) Determine the angle of deficiency ϕ to the dominant closed-loop pole at $s_{1}^{*}=-3 \pm j 4$.
σ-axis intercept, σ_{I}, and angles of asymptotes, θ_{A} :

$$
\sigma_{I}=\frac{\sum \text { poles }-\sum \text { zeros }}{\# \text { poles }-\# \text { zeros }}=\frac{(-1-3)}{2}=-2, \quad \theta_{A}=\frac{(2 k+1) 180^{\circ}}{\# \text { poles }-\# \text { zeros }}=90^{\circ}+k 180^{\circ}= \pm 90^{\circ}
$$

Angle of deficiency ϕ :
$\phi=180^{\circ}-\sum\left(\right.$ angles of vectors to s_{1}^{*} from poles in $\left.G(s)\right)=180^{\circ}-\left[90^{\circ}+\left(180^{\circ}-\arctan \left(\frac{4}{2}\right)\right)\right]=26.565^{\circ}$
(b) A student decides to design a lead compensator such that the compensated system $G_{d}(s)$ will have the dominant closed-loop poles at $s_{1}^{*}, s_{2}^{*}=-3 \pm j 4$. The student decided to place the zero to cancel out one of the poles of $G(s)$. What is the resulting transfer function $G_{c}(s)$?

Let $z_{c}=-3$ to cancel out the $s=-3$ pole of $G(s)$. Then we want $\sigma_{I}=-3$, so

$$
\sigma_{I}=-3=\frac{-1+p_{c}}{3-1} \quad \Rightarrow \quad p_{c}=-5 \quad \text { and } \quad G_{c}(s)=\frac{K_{c}(s+3)}{(s+5)}
$$

Find K_{c} :

$$
\begin{gathered}
G_{c}(s) G(s)=K_{c}\left(\frac{s+3}{s+5}\right)\left(\frac{9}{(s+1)(s+3)}\right)=\frac{9 K_{c}}{(s+1)(s+5)} \\
\left|\frac{9 K_{c}}{(s+1)(s+5)}\right|_{s=-3+j 4}=\left|\frac{9 K_{c}}{(-3+j 4+1)(-3+j 4+5)}\right|=\left|\frac{9 K_{c}}{(-2+j 4)(2+j 4)}\right|=1 \\
\Rightarrow 9 K_{c}=20 \quad K_{c}=\frac{20}{9} \\
G_{c}(s)=\frac{20(s+3)}{9(s+5)}
\end{gathered}
$$

(c) After the student has designed the above lead compensator, he/she found out that the resultant K_{v} value is too small and would like to increase the $K_{v}^{G_{d}}$ by 10 times. The student has decided to use a lag compensator $G_{c}(s)=\frac{K_{c}\left(s+z_{1}\right)}{\left(s+p_{1}\right)}$ for it. Determine z_{1} and p_{1} of the lag compensator. How can the student verify that his/her lag compensator design is satisfactory?
Let $z_{1}=0.05$ and $p_{1}=0.005$, so we have

$$
G_{c}(s)=\frac{K_{c}(s+0.05)}{(s+0.005)}
$$

Then the new open-loop transfer function is

$$
G_{c}(s) G(s)=\left(\frac{s+0.05}{s+0.005}\right)\left(\frac{20}{(s+1)(s+5)}\right)
$$

and the value of $K_{v}^{G_{d}}$ is increased by a factor of 10 . To verify the design, the student can check the angle from one of the desired dominant closed-loop poles.
4. Given a negative unity feedback control system with $G(s)=\frac{K+4 s}{s\left(s^{2}+8 s+16\right)}$,
(a) Sketch the root locus for $K>0$.

First, obtain the characteristic equation $1+G(s) H(s)=0$.

$$
\begin{gathered}
1+\frac{K+4 s}{s\left(s^{2}+8 s+16\right)}=\frac{s^{3}+8 s^{2}+16 s+4 s+K}{s\left(s^{2}+8 s+16\right)}=s^{3}+8 s^{2}+20 s+K=0 \\
\Rightarrow s^{3}+8 s^{2}+20 s+K=1+\frac{K}{s\left(s^{2}+8 s+20\right)}=0
\end{gathered}
$$

Thus, $p_{1}=0$ and $p_{2,3}=-4 \pm j 2$. Then $\sigma_{I}=-\frac{8}{3}$ gives us the intersection of the asymptotes with the σ-axis and $\theta_{A}= \pm 60^{\circ}, 180^{\circ}$ gives us the angles of the asymptotes. Finally, the breakaway and break-in points need to be found.

$$
\begin{gathered}
\sum \frac{1}{\sigma+z_{i}}=\sum \frac{1}{\sigma+p_{i}} \text { for real } \sigma \\
\Rightarrow \frac{1}{\sigma+4+j 2}+\frac{1}{\sigma+4-j 2}+\frac{1}{\sigma}=3 \sigma^{2}+16 \sigma+20=0 \\
\Rightarrow \sigma=-\frac{10}{3},-2
\end{gathered}
$$

The root locus sketch is as in Fig. 4.

(shown for gain between 0 and 80)

Figure 4: Problem 4 root locus plot (plotted on wolframalpha.com).
(b) Determine the angle of departure/arrival, if any.

Angle of departure from a complex pole, $\theta_{p_{i}}$:

$$
\begin{gathered}
\theta_{p_{i}}=180^{\circ}-(\text { sum of the angles of vectors to complex pole i from other poles }) \\
+(\text { sum of the angles of vectors to complex pole i from zeros }) \\
\theta_{p_{1}}=180^{\circ}-\left[\left(360^{\circ}-\arctan (0.5)\right)+\arctan (0.5)\right]=-180^{\circ} . \\
\theta_{p_{2}}=180^{\circ}-\left[90^{\circ}+\left(180^{\circ}-\arctan (0.5)\right)\right]=-90^{\circ}+26.57^{\circ}=63.43^{\circ} . \\
\theta_{p_{3}}=180^{\circ}-\left[-90^{\circ}+\left(180^{\circ}+\arctan (0.5)\right)\right]=90^{\circ}+206.57^{\circ}=-63.43^{\circ} .
\end{gathered}
$$

(c) Determine the value of K and the frequency at which the loci cross the $j \omega$-axis, if any.

$$
\begin{gathered}
\begin{array}{ccc}
s^{3} & 1 & 20 \\
s^{2} & 8 & \mathrm{~K} \\
& s^{1} & \frac{160-K}{8} \\
s^{0} & \mathrm{~K}
\end{array} \\
\frac{160-K}{8}=0 \quad \Rightarrow \quad K=160 \text { at the crossing point } \\
8 s^{2}+160=0 \quad \Rightarrow \quad s^{2}=-20 \quad \Rightarrow \quad s=j \omega= \pm j 2 \sqrt{5} \quad \Rightarrow \quad \omega= \pm 2 \sqrt{5} .
\end{gathered}
$$

The frequencies at which the loci cross the $j \omega$-axis are $\omega= \pm 2 \sqrt{5}$ when $K=160$.

