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1 Introduction

In this slecture, basic principles of implementing nearest neighbor rule will be
covered. The error related to the nearest neighbor rule will be discussed in detail
including convergence, error rate, and error bound. Since the nearest neighbor
rule relies on metric function between patterns, the properties of metrics will
be studied in detail. Example of different metrics will be introduced with its
characteristics. The representative of real application such as body posture
recognition using Procrustes metric could be a good example to understand the
nearest neighbor rule.

2 Nearest Neighbor Basic Principle

Let’s consider a testing sample x. Based on labeled training sample Dn =
x1, ..., xn, the nearest neighbor technique will find the closest point x’ to x.
Then we assign the class of x’ to x. This is how the classification based on
the nearest neighbor rule is processed. Although this rule is very simple, it is
also reasonable. The label θ′ used in the nearest neighbor is random variable
which means θ′ = wi is same as a posteriori probability P (wi|x′). If sample
sizes are big enough, it could be assumed that x’ is sufficiently close to x that
P (wi|x′) = P (wi|x). Using the nearest neighbor rule, we could get high accuracy
classification if sample sizes are guaranteed. In other words, the nearest neighbor
rule is matching perfectly with probabilities in nature.

3 Error Rate & Bound using NN

In order to find the error rate and bound related to the nearest neighbor rule,
we need to confirm the convergence of the nearest neighbor as sample increases
to the infinity. We set P = limn→∞ Pn(e). Then, we set infinite sample condi-
tional average probability of error as P (e|x). Using this the unconditional aver-
age probability of error which indicates the average error according to training
samples can be shown as

P (e) =
∫

(P (e|x)p(x)dx)
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Figure 1: NN rule leads to a partitioning of the input space into Voronoi cells

Since minimum error caused by the nearest neighbor cannot be lower than error
from Bayes decision rule, the minimum possible value of the error P ∗(e|x) can
be represented as

P ∗(e|x) = 1− (P (wm|x)

P ∗ =
∫

(P ∗ (e|x)p(x)dx)

In real application, we cannot guarantee that sufficient number of samples are
used for training. In some cases, small sample sizes could lead to an accidental
characteristics where it will eventually lead to an error. The decision will be
made on based on this nearest neighbor which introduces a conditional proba-
bility error P (e|x, x′). Again, averaging over x’, we will get

P (e|x) =
∫

(P (e|x, x′)p(x′|x)dx′)

Above equation, however, becomes trivial since p(x|x′) forms a delta function
centered at x. This condition gives out the positive number Ps which is the
probability that any sample falls within a hypersphere S centered about x

Ps =
∫
x′∈S p(x

′)dx′

This means that the probability that independently drawn samples fall outside
of hypersphere S is (1 − Ps)

n. This equation will approach zero as n goes to
infinity. This proves that x’ converges to x with infinite number of samples.

The proof of the convergence of the nearest neighbor rule ensures that the
error rate could be theoretically formulated. The conditional probability of
error Pn(e|x, x′) can be utilized to form theoretical error rate. Let’s assume x′n
is nearest neighbor where n indicates number of samples. Now we have,

P (θ, θ′n|x, x′n) = P (θ|x)P (θ′n|x′n)

Using the nearest neighbor rule, the error occurs when θ 6= θ′n. This will bring
following conditional probability of error.
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Pn(e|x, x′n) = 1−
∑c

i=1 P (θ = wi, θ
′
n = wi|x, x′n)

= 1−
∑c

i=1 P (θ = wi, θ
′
n = wi|x, x′n)

The asymptotic nearest neighbor error rate will be formulated by using previous
equation and exchange some limits and integrals.

P = limn→∞ Pn(e)
= limn→∞

∫
Pn(e|x)p(x)dx

=
∫

[1−
∑c

i=1 P
2(wi|x)]p(x)dx

Previously, it was mentioned that the nearest neighbor cannot be better than
Bayes decision. Therefore, it will be intuitive to represent the error bound of NN
rule in terms of Bayes rate P ∗. Since Bayes rate is a minimum possible error we
could obtain, the lower error bound should be fixed to P ∗. The upper bound,
however, will change according to given P ∗. The exact error rate obtained in
previous section can be utilized to get the upper error bound. First we set∑c

i=1 P
2(wi|x) = P 2(wm|x) +

∑
i 6=m P 2(wi|x)

with following two constraints and utilize these with above equation will intro-
duce new equation.

• P (wi|x) ≥ 0

•
∑

i 6=m P (wi|x) = 1− P (wm|x) = P ∗(e|x)

P (wi|~x) = P∗(e|~x)
c−1 , i 6= m

= 1− P ∗(e|x), i = m

These will lead to following inequalities.∑c
i=1 P

2(wi|x) ≥ (1− P ∗(e|x))2 + (c− 1)(P∗(e|x)
c−1 )2 and

1−
∑c

i=1 P
2(wi|x) ≤ 2P ∗(e|x)− c

c−1P
∗2(e|x)

This clearly demonstrates that the nearest neighbor rule’s maximum error rate
is less than twice of Bayes decision error (P ≤ 2P ∗). Obviously we can get
better error bound by observing the variance where

V ar[P ∗(e|x)] =
∫

[P ∗(e|x)− P ∗]2p(x)dx
=

∫
P ∗2(e|x)p(x)dx− P ∗2 ≥ 0

Applying this equation with previous equation, we will get the desired error
bounds on the nearest neighbor rule for infinite number of samples. Figure 2
illustrates the graphical error bound of the nearest neighbor rule.

P ∗ ≤ P ≤ P ∗(2− c
c−1P

∗)
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Figure 2: Error bound of nearest neighbor rule based on Bayes error

4 Metrics Type & Application

However, the closest distance between x’ and x is determined by which metrics
are used for feature space. A ”metric” on a space S is a function which has
following 4 properties:

• Non-negativity : D( ~x1, ~x2) ≥ 0,∀ ~x1, ~x2 ∈ S

• Symmetry : D( ~x1, ~x2) = D( ~x2, ~x1),∀ ~x1, ~x2 ∈ S

• Reflexivity : D(~x, ~x) = 0,∀~x ∈ S

• Triangle Inequality : D( ~x1, ~x2) +D( ~x2, ~x3) ≥ D( ~x1, ~x3),∀ ~x1, ~x2, ~x3 ∈ S

There are many metrics which satisfy above properties. The example metrics
are followings:

• Euclidean distance: D( ~x1, ~x2) = || ~x1 − ~x2||L2
=

√∑n
i=1(x1i − x2i)2

• Manhattan (cab driver) distance: D( ~x1, ~x2) = || ~x1− ~x2||L1
=

∑n
i=1 |x1i−

x2
i|

• Minkowski metric: D( ~x1, ~x2) = || ~x1 − ~x2||Lp = (
∑n

i=1(x1
i − x2i)p)

1
p

• Riemannian metric: D( ~x1, ~x2) =
√

( ~x1 − ~x2)>M( ~x1 − ~x2)

• Infinite norm: D( ~x1, ~x2) = || ~x1 − ~x2||∞ = maxi|x1i − x2i|

Figure 3 describes the effect of using different metrics. Since these metrics
share common properties, the dissection area are almost similar. However, the
different distance calculation makes the boundary shape different from each
other. For problem with two features with no similarity, the Tanimoto metric
is widely used. The Tanimoto concentrates on calculating the distance between
two sets as
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Figure 3: Voronoi diagrams under different metrics: Euclidean (Left), Manhat-
tan (Middle) Minkowski (Right)

DTanimoto(S1,S2) = n1+n2−2n12

n1+n2−n12

In here n1 and n2 represent number of elements in the set and n12 means the
number of common elements in both sets. Let’s consider following example,
n1 = {fever, skinrash, highbloodpressure}
n2 = {fever, neckstiffness}
In this case n1 = 3, n2 = 2, and n12 = 1.

Use of different metrics enhances an accuracy of the nearest neighbor rule
for several applications. The body recognition is one of the main application of
the nearest neighbor rule. The body posture recognition is very complex since
the coordinates varies even with same posture due to translation and rotation.
Adopting conventional Euclidean distance will not identify same posture with
different translation and rotation. Before comparing the actual posture, testing
sample should be translated and rotated inversely to the training sample for
right comparison of each point. Procrustes metric will approach the problem
with the translation and rotation compensation. Following equation describes
how Procrustes metric works

D(p, p̄) =
∑c

i=1 ||Rpi + t− p̄i||L2 where rotationR, translationT
p = (p1, p2, · · · , pN ), p̄ = (p̄1, p̄2, · · · , p̄N )

p indicates testing sample while p̄ refers single instance of training sample. As
you can see, the compensation on rotation and translation has been before
comparing the distance between testing sample and training sample. Alternative
approach is also available where we use invariant coordinates as feature vectors.
The invariant coordinates do not change under translation and rotation effect.
In other words, find ϕ such that

ϕ : Rn → Rk where, typically k ≤ n
ϕ(x) = ϕ(~x)

such that ϕ(g · x) = ϕ(x),∀g ∈ group of rotation & translation

Typical example of the invariant coordinates of the body can be the distance
between fixed joints. Let’s consider simple 1D problem where we count distance
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Figure 4: Utilization of the nearest neighbor with proper metrics for optimal
shape searching

as invariant coordinates. In this example, our feature vectors are distance and
we only compare the distance for the classification.

ϕ(P1, P2, ..., Pn) = (d12, d13, ..., d1213) where dij = ||Pi − Pj ||2L2

Figure 4 illustrates the use of the nearest neighbor method for shape search-
ing. Adopting special metrics introduced previously, the robust and low-cost
classifier could be set. However, users always have to be cautious on choosing
invariant coordinates. For instance, the distance is not a feature vector that
always works. Thus, we should select proper feature vectors which are invariant
during specific situation. There are timebased, geometric, and dimensionless
geometric invariants which could be utilized in the application.

5 Discussion

In this lecture we go over from basic principle of the nearest neighbor rule to
its application. Throughout the lecture, the error rate and error bound is found
out that the minimum error cannot be lower than Bayes error and the maximum
error cannot be bigger than twice of Bayes error. With the sufficient sample
sizes, it is reasonable to use the nearest neighbor for the classification. The study
of the different metrics show that various metrics are available for specific need
from each application. The example of posture recognition using the nearest
neighbor demonstrates that proper metric adoption is critical to enhance the
classification result. Use of proper metric with the nearest neighbor classification
will result in forming reasonable classifier.
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