Huddle Board Exercise for Module 4 – No. 1a Monday, April 14, 2014

Complete the following ABEL file so that it implements a 4-bit carry look-ahead adder based on the DECLARATIONS section provided below.

```
MODULE cla4
TITLE '4-bit Carry Look-Ahead Adder'
DECLARATIONS
X0..X3, Y0..Y3 pin; " operands
CIN pin; " carry in (Cin)
S0..S3 pin istype 'com'; " sum outputs
CO..C3 pin istype 'com'; " carry outputs (C3 is carry out)
PO..P3 pin istype 'com'; " propagate functions
G0 = X0&Y0; " generate functions
G1 = X1&Y1;
G2 = X2&Y2;
G3 = X3&Y3;
EQUATIONS
P0 = X0$Y0; " propagate functions
P1 = X1\$Y1;
P2 = X2$Y2;
P3 = X3$Y3;
" carry functions
C3 = ____
S0 = CIN$P0; " sum functions
S1 = C0\$P1;
S2 = C1\$P2;
S3 = C2$P3;
END
```

Huddle Board Exercise for Module 4 – No. 1b Monday, April 14, 2014

Draw a circuit that multiplies a 4-bit unsigned binary number X3 X2 X1 X0 by a 2-bit unsigned binary number Y1 Y0, using an array of full-adder cells. Determine the worst case propagation delay if each full adder takes 10 ns to produce its C and S outputs, and each AND gate (used to generate the product components) has 5 ns of propagation delay.

The worst case propagation delay is:

Huddle Board Exercise for Module 4 – No. 2a Wednesday, April 16, 2014

Assume the simple computer instruction set has been changed to the following:

Opcode	Mnemonic	Function Performed
0 0 0	ADD addr	Add contents of <i>addr</i> to contents of A
0 0 1	SUB addr	Subtract contents of <i>addr</i> from contents of A
0 1 0	LDA addr	Load A with contents of location addr
0 1 1	XOR addr	XOR contents of <i>addr</i> with contents of A
100	STA addr	Store contents of A at location <i>addr</i>
101	HLT	Halt – Stop, discontinue execution

On the instruction trace worksheet, below, show the *final result* of executing the program stored in memory up to and including the HLT instruction.

Huddle Board Exercise for Module 4 – No. 2b Wednesday, April 16, 2014

From the **BLOCK DIAGRAM** for one bit ("i") of the ALU, complete the table below:

AOE	ALE	ALX	ALY	Function Performed	CF	ZF	NF	VF
				LDA: [Q3Q0] ← [D3D0]	•	Х	Х	•
				AND: $[Q3Q0] \leftarrow [Q3Q0] \cap [D3D0]$	•	Х	Х	•
				SUB: [Q3Q0] ← [Q3Q0] – [D3D0]	Х	Х	Х	Х
				ADD: $[Q3Q0] \leftarrow [Q3Q0] + [D3D0]$	Х	Х	Х	Х
				OUT: [D3D0] ← [Q3Q0]	0	•	•	•
				(no operation – retain state)		Ø		•

