1. Assume that $1<p<\infty, \frac{1}{p}+\frac{1}{q}=1, f \in L^{p}(\mathbb{R})$ and $g \in L^{q}(\mathbb{R})$.
(a) Let $h(x)=\int f(x-y) g(y) d y$. Show that h is bounded.
(b) Show that h is continuous.
2. Suppose $\int_{a}^{b} f d \phi$ exists and is a Riemann-Stieltjes integral. Show

$$
\int_{a}^{b} f d \phi=f(b) \phi(b)-f(a) \phi(a)-\int_{a}^{b} \phi d f
$$

3. For what α does $\sum_{n=1}^{\infty} \sin ^{\alpha}(n!e \pi)$ converge absolutely?
4. Evaluate the following limits.
(a)

$$
\lim _{t \rightarrow 0} \int_{0}^{1} \frac{e^{-t \ln x}-1}{t} d x
$$

(b)

$$
\lim _{n \rightarrow \infty} \int_{1}^{n^{2}} \frac{n \cos \left(\frac{x}{n^{2}}\right)}{1+n \ln x} d x
$$

5. Let $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$. Assume that $f \in L^{1}\left(\mathbb{R}_{\geq 0}\right)$ satisfies

$$
f(x) \leq c \int_{0}^{x} f(t) d m(t)
$$

with c independent of x. Show that $f(x)=0$ for every $x \in \mathbb{R}_{\geq 0}$.
6. Find all functions $f \in B V[0,1]$ with $\int_{0}^{1} f=\frac{1}{3}$, and

$$
f(0)-\left(V_{0}^{x}\right)^{\frac{1}{2}}=f(x)
$$

7. Let μ be a finite measure on A, let f be measurable and bounded on A, and let ϕ be convex in an interval containing the range of f. Prove that

$$
\phi\left(\frac{\int_{A} f d \mu}{\int_{A} d \mu}\right) \leq \frac{\int_{A} \phi(f) d \mu}{\int_{A} d \mu}
$$

8. Suppose $f_{n}, n \in \mathbb{N}$, is a sequence of nonnegative measurable functions on a measure space $(\Omega, \mathcal{A}, \mu), f_{n} \rightarrow f$ a.e., and there are subsequences $f_{n_{j}}, f_{m_{j}}$ such that

$$
\int_{\Omega} f_{n_{j}} \rightarrow 1, \int_{\Omega} f_{m_{j}} \rightarrow 3 \text { as } j \rightarrow \infty
$$

State and justify the best upper and lower bounds for $\int_{\Omega} f$ based on the given information.
9. Let $f \in L^{1}([0,1])$ and let $F(x)=\int_{0}^{x} f(t) d t$. If E is a measurable subset of $[0,1]$, show that
(a) $F(E)=\{y: \exists x \in E$ with $y=F(x)\}$ is measurable.
(b) $m(F(E)) \leq \int_{E}|f(t)| d t$.

