
Question 1 

Aim:  

To perform an experiment by devising a fisher discriminant classifier to classify different classes 

of data, and to make a modification in the design and verify the outcomes, and finally to draw 

conclusions from the same 

Introduction: 

The fisher discriminant is one of the popularly used techniques for pattern classification cum 

recognition. It deals with the projection of data with higher dimensionality into lower subspaces, 

so that faster and easier computation is facilitated. One should not that even though samples 

could form well-separated, compact clusters in d-space, projection onto an arbitrary line will  

usually produce a confused mixture of samples from all of the classes, and thus poor recognition 

performance. However, by moving the line around, we might be able to find an orientation for 

which the projected samples are well separated. This is exactly the goal of classical discriminant 

analysis.  

The equation of the Fisher linear discriminant function is given [1] as follows: 
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which on simplification yields the Fisher‟s linear discriminant - the linear function yielding the 

maximum ratio of between-class scatter to within-class scatter, given by 

1

1 2( )Ww S m m , where
1 2WS S S , 

1 2,S S being the scatter matrices and 
WS  is called the 

within class scatter matrix. Our aim hence would be to maximize w so as to obtain the best 

possible discriminating surface. 

Procedure: 

Let us run through the steps that were followed during the experimentation process. Firstly, we 

chose to use artificially generated data so as to enhance flexibility in the experimentation 

process. This was done using the „mvnrnd’ command in Matlab®. Two sets of data were 

generated using this, for varying degrees of overlapping and scattering. This was first tested 



using the Fisher linear discriminant, followed by what is called the modified fisher discriminant, 

which was obtained by modifying equation (1), given by
1 2( )w m m . Accuracies of both were 

compared and tabulated. 

We shall now describe the method that was used in finding out the line of separation in 2 -D or 

the plane of separation in 3-D. We may recall from [1] that
0 0Tw x w , where 

0w is a constant 

that involves w and the prior probabilities. After obtaining
0w , we can compute the separating 

line with the knowledge that it is of the form bx ay k , given that w is of the 

form ax by c . In case of 3-D, if w be the plane of projection, we first project the data (x) to a 

plane
nw , which is a plane perpendicular to w . This projection of x is then subtracted from x, 

which will give us the equation of the plane of projection. 

Results and Discussion: 

Simulations were carried out in MATLAB®, and the results were recorded. We shall now 

discuss results so obtained for several different cases, with respect to the distribution of data. The 

discussion that follows, will deal with both the Fisher linear discriminant and its modified 

version. 

Case 1 

Here we deal with 2-D data that are well separated in space. 

 

 

 

 

 

Method Accuracy % 

Fisher 100 

Modified fisher 100 

 

 Class I Class II 

Mean [1 2 ] [-2    -4 ] 

Variance 
0.4 0

0 0.4
 0.4 0

0 0.4

 



 

Fig1: Results & Discussion, Case 1                                 

Figure 1 shows the projections and separation hyper plane for the fisher discriminant and for the 

modified fisher method respectively. As we can see, the modified fisher discriminant produces a 

separation surface that is perpendicular to the line joining the means of the two classes of data. 

This is a typical case wherein the error is zero in spite of w being different. We get cent percent 

accuracy rates in both cases because the classes are well separated out in space. Hence it is not 

possible to investigate the better classifier of these two, for this case. 

Case 2 

Here we shall examine the case of 2-D separated data which lead to an error in classification 

 

 

 

 

 

 

 

 

 Class I Class II 

Mean [5  6 ] [2    6 ] 

Variance 
1 0

0 1
 

0.1 0

0 0.1
 

Method Accuracy % 

Fisher 100 

Modified fisher 96.15 



 

Fig2: Results & Discussion, Case 2 

As shown in figure 2, the modified Fisher discriminant underperforms as compared to the fisher 

discriminant, as it draws a line of separation perpendicular to the one joining the means where 

that is not supposed to be the case.  Hence this case exposes the lacuna present in the modified 

Fisher classifier technique. 

Case 3 

We now examine the case where we have 2-D OVERLAPPING data, and study the 

performances of both the classifiers. 

 

 

 

 

 

 

 

 

 Class I Class II 

Mean [2 8] [6,5] 

Variance 
8.48 0.05

0.05 7.6
 

8.64 0.15

0.15 8.53
 

Method Accuracy % 

Fisher 83.25 

Modified fisher 83.15 



 

 

Fig3: Results & Discussion, Case 3 

 

As shown in figure 3, the fisher and the modified fisher methods perform similarly on these 

overlapping data sets, with the accuracy of classification very close to each other. This is also 

partially due to the fact that the data here is such that the direction of minimum variance is the 

same as that joining the means of the data. 

Case 4 

All the previously dealt with cases were ones that used Gaussian data. We shall now experiment 

with 2-D uniform data. The following are the results obtained: 

 

 

 

 

 

 

 

 

 Class I Class II 

Mean [25    0]           [-25   0]  

Variance 
1026.9 6.3

6.3 16.9
 

1027.1 4.4

4.4 17.1
 

Method Accuracy % 

Fisher 83.97 

Modified fisher 100 



 

Fig4: Results & Discussion, Case 4 

 

The data and its projection (enlarged view for the modified Fisher‟s method) 

 

 

Fig5: Results & Discussion, Case 4 

 

This is rather a peculiar case, the motivations for which arose from the fact that there would exist 

a particular case in which the modified fisher method would outperform the Fisher method. 

Hence two uniformly distributed data sets as shown in figure 5 were generated. These were 



tested using both classifiers and the modified fisher discriminant outperformed its predecessor. 

This is because this case is tailor made for the modified Fisher method, in that, the line of 

separation is exactly perpendicular to the line joining the means of the data. This case however is 

of interest from the academic perspective alone, and rarely does one come across such data in 

real time. 

Case 5 

We shall now switch to 3-D, and record the results. We here deal with well separated data in 

which both yield similar results 

 

 

 

 

 

 

 

 

 

 

Plotted below are the figures of both the discriminators. As usual, the fisher method is shown in 

the left and the modified method is on to the right. We see that both perform extremely well, as 

the data here is very well separated, as was in case 1. 

 

 

 

 Class I Class II 

Mean [ 1.0285    1.9437   3.0294 ] [ -0.9586   -2.0054   -2.9299 ] 

Variance 

1 0 0

0 1 0

0 0 1

 

1 0 0

0 1 0

0 0 1

 

Method Accuracy % 

Fisher 100 

Modified fisher 100 



 

Fig6: Results & Discussion, Case 5 

 

Case 6 

We shall now examine cases in which we see that the Fisher method clearly outperforms the 

modified Fisher method. 

 

 

 

 

 

 

 

 

 

 

 

 

 Class I Class II 

Mean [0.9912    2.0148    3.0280] [-0.9889    0.9819    1.9961 ] 

Variance 

0.8 0.2 0.1

0.2 0.5 0.4

0.1 0.4 0.9

 

0.8 0.2 0.1

0.2 0.5 0.4

0.1 0.4 0.9

 

Method Accuracy % 

Fisher 89.35 

Modified Fisher 88.15 



 

Fig7: Results & Discussion, Case 6 

 

The above figures show the performances of the two methods for overlapping data sets. The next 

example will display the superiority in the performance of Fisher, for non-overlapping data as 

well. 

 

 

 

 

 

 

 

 

 

 

 

 

 Data 1 Data 2 

Mean [ 0 0 0 ] [ 2 2 0 ] 

Variance 

7 0 0

0 0.05 0

0 0 0.08

 

0.08 0 0

0 0.08 0

0 0 0.08

 

Method Accuracy % 

Fisher 100 

Modified Fisher 89 



 

Fig8: Results & Discussion, Case 6 

 

The above figures show the performances of the two methods for non-overlapping data sets, 

from which we clearly see that the Fisher method surpasses the modified fisher method in 

performance. 

To conclude, one can say that from the experiments performed, it is possible to say that the 

Fisher method is the superior to the modified Fisher method. Although we have shown a case 

which runs contrary to the previous conclusion, such cases are extremely rare to occur, and even 

in this case, it was tailor-made for the sake of experimentation. Hence we can finally conclude 

that the Fisher linear discriminant is superior to its modified version. 

The following segment shows the MATLAB routine for this experiment. 

 

 

 

 

 

 

 



MATLAB CODE: 

 

%Fisher Discriminant function for 2 and 3D data. X1 , X2 are data vectors 
%with each row being a feature vector . d is the dimesnsion size and k is 
%the offset for plotting in 3-D  

  
function fisher(X1,X2,d,k,rt) 

  
%variables to hold size of input data 
[m n]=size(X1); 
m1=zeros(1,d); 
m2=zeros(1,d); 

  

%Checking for data's dimensionality 
if(d==3) 
plot3(X1(:,1),X1(:,2),X1(:,3),'r+:'); 
hold on 
plot3(X2(:,1),X2(:,2),X2(:,3),'g*:'); 
end 

  
if(d==2) 
plot(X1(:,1),X1(:,2),'m+'); 
hold on 
plot(X2(:,1),X2(:,2),'k*'); 
end 

  

  
m1=mean(X1) 
m2=mean(X2) 
X=[X1;X2]; 

  

%glm stores the global mean 
glm=mean(X) 
S1=cov(X1) 
S2=cov(X2) 
SW=S1+S2; 

  
%Compute Weight function 
w=(SW^-1)*(m1-m2)'; %change this to (m1-m2)’ for modified fisher 

  
if(d==3) 
plot3(w(1)/(sqrt(w(1)^2 + w(2)^2 + w(3)^2)),w(2)/(sqrt(w(1)^2 + w(2)^2 + 

w(3)^2)),w(3)/(sqrt(w(1)^2 + w(2)^2 + w(3)^2)),'X'); 
end 
if(d==2) 
    plot(w(1)/(sqrt(w(1)^2 + w(2)^2)),w(2)/(sqrt(w(1)^2 + w(2)^2)),'X'); 
end 
magw=sqrt(w'*w); 
vecw=w/magw; 

  

  
if(d==3) 
vecw2=[-vecw(2) vecw(1) 0]; 
mag2=sqrt(vecw2*vecw2'); 
vecw2=vecw2/mag2; 



end 

  
if(d==3) 
for i=1:m 
    vec1(i,:)=X1(i,:)-(X1(i,:)*vecw2')*vecw2; 
    vec2(i,:)=X2(i,:)-(X2(i,:)*vecw2')*vecw2; 
end 
end 

  

%variables used for plotting 
xmin=min(X(:,1)); 
xmax=max(X(:,1)); 
ymin=min(X(:,2)); 
ymax=max(X(:,2)); 

  
%plots the plane in between classes 
if(d==3) 
    x=[xmin:0.1:xmax]; 
    y=[ymin:0.1:ymax]; 
    for i=1:length(x) 
        for j=1:length(y)  
    z(i,j)=(-w(1)*x(i)-w(2)*y(j) +glm*w)/w(3); 
        end 
    end 
[p q]=size(z); 
mesh(y,x,z); 
end 

  
%Computes number of misclassified points 
if(d==2) 
for i=1:m 
    vec1(i,:)=(X1(i,:)*vecw)*vecw'; 
    vec2(i,:)=(X2(i,:)*vecw)*vecw'; 
end 
end 
misc1=0; 
misc2=0; 
if(d==3) 
    for i=1:m 
        t1(i,:)=vec1(i,:)+k*vecw2; 
        t2(i,:)=vec2(i,:)+k*vecw2; 
        if(X1(i,:)*w - glm*w < 0) 
            misc1=misc1+1; 
        end 
        if(X2(i,:)*w - glm*w >0) 
            misc2=misc2+1; 
        end 
    end 
end 

  
if(d==3) 
plot3(t1(:,1),t1(:,2),t1(:,3),'+','Color','b'); 
plot3(t2(:,1),t2(:,2),t2(:,3),'x','Color','g'); 
end 

  
%Compute accuracy 



misc1=0; 
misc2=0; 
w0=glm*vecw 
r=w0*vecw'; 
if(d==2) 
    plot(r(1),r(2),'X'); 
    line([(r(1)-k*vecw(2)),(r(1)+rt*vecw(2))],[(r(2)+k*vecw(1)),(r(2)-

rt*vecw(1))]); 
    plot(vec1(:,1),vec1(:,2),'b+:'); 
    plot(vec2(:,1),vec2(:,2),'gx:');   
    for i=1:m 
        if(X1(i,:)*w - glm*w < 0) 
            misc1=misc1+1; 
        end 
        if(X2(i,:)*w - glm*w >0) 
            misc2=misc2+1; 
        end 
    end 
    accuracy=100*(1-(misc1+misc2)/(2*m)) 
end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Question II 

Aim: 

To obtain a set of training data and divide the training data into training data and test data, and 

experiment with designing a classifier using the neural network approach and the support vector 

machine approach, and to compare the results so obtained. 

Introduction: 

Neural Networks are powerful, biologically inspired tools used for pattern classification. When 

we talk of neural networks in the context of pattern classification, we often mean artificial neural 

networks, or ANN, that are made of interconnected artificial neurons. These neurons mimic the 

performance of the biological neurons. 

 

Fig9: Artificial neural networks 

Another very important tool used for pattern classification and supervised learning methods used 

for classification and regression, that belongs to the family of generalized linear classifiers is the 

Support vector machine (SVM). They can also be considered a special case of Tikhonov 

regularization. The philosophy behind the working of SVM is to minimize the empirical 

classification error and maximize the geometric margin, by the virtue of which it is alternatively 

termed as maximum margin classifier. 

http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Tikhonov_regularization
http://en.wikipedia.org/wiki/Tikhonov_regularization
http://en.wikipedia.org/wiki/Tikhonov_regularization


Procedure: 

Before we start explaining the experiments, let us have a first-look at the neural networks and 

support vector machine tools that are available in Matlab. These tools were used in the process of 

experimentation. 

SVM tool in Matlab®. 

Described below are the commands used in the experiments:  

Command Input Functions Comments 

svmtrain 

-test vectors, 

-the group they belong to 

-the kernel function 

-the order of the polynomial     

(for polynomial kernel) 

-display plot option 

                                                        

-show-plot option 

plots the data, 

labels the classes, 

and draws the 

separation hyper-

surface 

 

Of the several kernel 

functions that are available, 

we have experimented with 

Radial Basis function and 

the polynomial kernel of 

varying orders. 

svmclassify 
-structure returned by the above 

function 

-classifies the data 

as belonging to 

either class 1 or 2, 

and returns a 

vector containing 

classes of test data 

-The vectored that is 

returned is used to measure 

the accuracy of the SVM. 

 

Neural Network tool in Matlab® 

Matlab® provides a Graphical User Interface (GUI) Tool, for working with neural networks. It 

works on the basis of accepting inputs from the user, in the form of data and parameters. This 

provides an extremely flexible tool to the user, wherein several parameters of the network can be 

changed, so that the desired performance can be achieved. Some of the parameters that can be 

modified by the user are the activation function, the initial weights, the training and test data, the 

number of epochs and the target data for the given training set.  

The user inputs the training data, which is a (d x n) matrix, where the dimension of the data is 

given by d, and the number of training vectors is given by n. The target data is actually the data 



that contains the values that ought to be the output upon correct classification. The error is 

calculated as the difference between the actual output and the target output. Once this data is 

given we can “create” the network by specifying the following:  

 Type of network  

 Training function  

 Adaption Learning Function 

 Number of layers  

 Number of neurons per layer 

 Transfer Function for neurons. 

Let us look at some of the snapshots of the nntool in Matlab. 

 

Fig10: NNtool in Matlab 

 

 



 

Fig11: NNtool in Matlab 

 

Fig12: NNtool in Matlab 

 



The following table gives us the details of the parameters used during the experimentation 

process. Parameters such as the number of hidden layer neurons and the number of time-epochs 

used for convergence were varied throughout the experiment. 

Network type 
 

feed forward back propagation 

Training function LM function 

Adaption Learning 

function 
LEARNGDM function 

Error performance Mean Square Error 

Activation function Tan-sigmoid 

# hidden layer neurons Varying throughout the experiment 

# time-epochs Varying throughout the experiment 

 

Results and Discussion: 

Experiments were conducted to evaluate the performance of both classifiers. Initially, 1000 

points of each class were generated. Next, these data points were split as training data and testing 

data, and the percentage split was varied as 10-90, 35-65, 65-35 and 90-10 respectively. For 

SVM, the performance evaluation was done for different kernels. As for the neural networks, the 

number of neurons present in the hidden layer was varied. Shown below are tables comprising of 

data for SVM, followed by figures. Subsequently, we also take a comparative look at the 

performances of neural networks and SVM. 

Case 1 

We consider here 2-D data that are overlapping.  The table below shows the means and variances 

of the two classes, and this is followed by the plots for SVM classification. 



 

 

 

 

 

 

 

Fig13: Training data and support vectors for different proportions of training data using Radial Basis Functions 

 

 Class I Class II 

Mean [1  1] [4  3]  

Variance 
0.8 0.07

0.07 0.5
 

1 0.5

0.5 1
 



 

 

# of Training Samples 100 350 650 900 

Accuracy Neural Network              

( 5 neurons in hidden layer) 
93.72 95.42 96.85 94.83 

Accuracy- RBF Kernel 94.9444 94.8462 95.4286 96 

Accuracy 2
nd

 degree poly. Kernel 94.6667 94.7692 94.1429 94.5000 

Accuracy 3
rd

 degree poly. Kernel 94.5556 94.6154 94.2857 95 

 

A look at the data chosen above would reveal that the data have separated means, but the 

variances chosen result in an overlap between the classes. Classification using Support Vector 

machines results in an accuracy percentage in the range of 94-96%, which is fairly high. Also, 

there is no appreciable difference in the performances of SVM using RBF and the polynomial 

kernel (of order 2 and 3). Thus, we can say that for data sets that don‟t have much of an overlap, 

SVM performs well, giving good accuracy rates. 

For the case of ANN with 5 neurons, the accuracy rate starts at 93% for a training set of 100 

points, increases gradually with an increase in the amount of training data to around 97%, and 

then dips when the amount of training data increases drastically to 900 points. This is 

understandable, as it means that the performance improves with the increase in training data, as 

the system becomes “more acclimatized” to the data set, and starts performing better. However, 

with a huge training data set, the network faces what is known as “overtraining hazard”, because 

the network starts “following” the data curve too closely. Further, although not quantified, we 

also observed that the neural network took appreciably more time to converge than its SVM 

counterpart. This can be considered a potential glitch for problem involving large data sets, or 

when the margin of error for convergence is very small. 

Case 2 

We now consider the case in which we have 2D data sets that are more overlapping, as a 

consequence of having closely located means.  



 

 

 

 

 

 

Fig14: Training data and support vectors for different proportions of training data using Radial Basis Functions 

 

 

 

 Class I Class II 

Mean [1  1] [2  2]  

Variance 
0.8 0.07

0.07 0.5
 

0.7 0.21

0.21 0.56
 



# of Training Samples 100 350 650 900 

Accuracy Neural Network 76.67 77.61 80.14 50.0 

Accuracy - RBF Kernel 74.7222 75.0769 75.7143 78 

Accuracy 2
nd

 degree poly. Kernel 74.8333 74.6923 73.7143 77 

Accuracy 3
rd

 degree poly. kernel 74.0556 73.5385 NC NC 

 

The motivation behind conducting this experiment was to see the performance of the tools when 

we had overlapping data. In this case support vector machines with radial basis functions have a 

accuracy between 74 and 78%. Similar performance was obtained for polynomial kernels of 2
nd

 

and 3
rd

 order. However, we were unable to achieve a convergent value for 3
rd

 order polynomial 

kernel operating on 650 and 900 training data points, owing to the inability of the system to 

handle large amounts of data. As for the case of neural networks with 5 neurons, a steady 

increase in performance is seen with an increase in training data, and as expected, a dip in the 

performance for extremely large values of training data. 

As is seen above, neural networks perform poorly as compared to SVM for an overly trained 

scenario of 90%. However, it performs better that SVM for 65% training data usage. But this 

bettered performance comes at the price of increased time requirements in that, neural networks 

take a considerable larger amount of time than SVM, which can be an important set-back in 

certain applications. 

Case 3 

We shall now see some more additional cases, by changing the distribution of data, and we shall 

also consider the 3-D case. 

 

 

 

 

 Class I Class II 

Mean  [1 1 1] [3 3 3] 

Variance 

1 0 0

0 2 0

0 0 5

 
1 0 0

0 2 0

0 0 5

 



 

 

 

 

Here we consider 3D data with more overlapping, by just increasing the variance. 

 

 

 

 

 

 

 

 

 

Finally, we consider 3-D data with more overlapping, by shifting the means.  

 

 

 

 

 

 

# of Training Samples 100 350 650 900 

Accuracy Neural Network 68.16 69.31 72.0 71.33 

Accuracy (RBF Kernel) 72.22 70.85 72.14 74.50 

 

 

# of Training Samples 100 350 650 900 

Accuracy Neural Network 85.55 87.38 88.0 86.32 

Accuracy SVM(RBF Kernel) 88.38 89.30 89.29 92.50 

 Class I Class II 

Mean [ 1 1 1 ] [ 3 3 3 ] 

Variance 

1.5 0 0

0 2.5 0

0 0 5.5
 

1 0 0

0 2 0

0 0 5
 

# of Training Samples 100 350 650 900 

Accuracy  (RBF Kernel) 87.78 88.85 88.29 87.50 

 Class I Class II 

Mean [ 2 2 2 ] [ 1 1 1 ] 

Variance 

1 0 0

0 2 0

0 0 5
 

1 0 0

0 2 0

0 0 5
 



Case 4 

We shall now consider a very interesting case, in which we deal with sets of data that are 

peculiarly oriented. Motivations for performing such an experiment arose from [2], where 

Stanislaw Osowski et.al have compared the performance of SVM and neural networks for data 

sets that are oriented spirally. Experiments using such data sets were performed by varying the 

angle of orientation, and also by varying the parameters of the neural network. Shown below are 

the specifications of the data, followed by the concerned plots for SVM and neural networks. 

Initially, experiments were performed by varying the training data without sampling. By this we 

mean that if 100 training points are supplied, these 100 points are the first 100 points of the data, 

and NOT ones obtained by sampling the data at fixed intervals. 

 

Fig15: Training data and support vectors for different proportions of training data using Radial Basis Functions 



# of Training Samples 100 350 650 900 

Accuracy Neural Network 41.61 45.07 30.71 33.0 

Accuracy RBF Kernel 47.89 48.15 20.86 2.50 

 

As seen in the table above, the accuracy of both the neural network and SVM is very poor. In 

particular, we note the performance of the SVM at 900 training data points. This gives almost 

100% error because, from the figure shown above, the test data points of class one almost fill up 

the left of the discriminating hyper-surface, while the test points of class 2 fill up the right side, 

which means that the classification becomes entirely wrong for this case. 

These shortcomings in classification is largely because of the fact that we have used test and 

training data without sampling the given data, which means we leave a lot for prediction and 

chance, and the training data does not serve its purpose to “train” the network. 

Case 5 

We here deal with the case wherein the input data is sampled first, and then split as training and 

test data. For example, if we need 100 training points, we sample the input data at one for every 

ten data points, thereby obtaining 100 data points for a data set of size 1000 points. Let us now 

examine the efficiency of this method. 

First we take every 10th sample from the data set, and next, we take every 20th sample from the 

data set, and the experiments are performed with polynomial kernel and RBF. 

For angle 4π: 

 

 

 

 

 

 

 

Fraction of samples 1/10 1/20 

Accuracy Neural Network 25 hidden neurons 99.94 99.95 

Accuracy Neural Network 10 hidden neurons 82.77 75.47 

Accuracy with 8
th

 degree poly Kernel 99 94.21 

Accuracy with RBF Kernel 55.78 56.63 



Using a 7th degree polynomial kernel, the accuracy was 98.78%. However, below this, poor 

accuracy rates were obtained. This goes on to show that an increase in the spiral angle demands 

higher degree polynomials for robust error performances. 

 

Fig16: Training data and support vectors for different proportions of training data using polynomial Functions 

 

 

Fig17: Training data and support vectors for different proportions of training data using Radial Basis Functions 

 



For angle 2.5π: 

Fraction of Samples 1/10 1/5 1/2 

ANN acc. with 25 hidden neurons 99.94 99.94 99.94 

Accuracy- Neural Network 66.89 76.23 81.33 

Accuracy- RBF Kernel 86.50 95.25 96.50 

 

 

Fig18: Training data and support vectors for different proportions of training data using Radial Basis Functions 

 

 

 

 



Finally, let us have a look at the snapshots of the GUI tools in Matlab that appear as the output, 

by making a sample run of NNtool in Matlab. 

Error Convergence Curve: 

 

Fig19: NNtool in Matlab 

The Neural Network that gets generated based on input parameters: 

 

Fig20: NNtool in Matlab 

To conclude, one can say that SVM performs better as compared to neural networks operating 

upon with lesser neurons. Increase in number of neurons can contribute to a significant increase 

in the performance of the neural network, but this comes at the expense of increased operating 

time. Also, we find that SVMs do not depend on the dimensionality of the data under 

consideration, as compared to ANNs. Further, in SVM, the polynomial kernel function performs 



better than the radial basis function, because the former has greater degrees of freedom and has a 

greater chance of developing complex curves as compared to the radial basis function. 

The following segment shows the MATLAB routine for this experiment. 

MATLAB CODE: 

 

%Script for running SVM 

clear all 
close all 
clc 

  
X2=mvnrnd([2 2 2],[1 0 0; 0 2 0; 0 0 5],1000); 
X1=mvnrnd([1 1 1],[1 0 0; 0 2 0; 0 0 5],1000); 

  
trn1=350; 
trn2=350; 
Xtrain=[X1(1:trn1,:);X2(1:trn2,:)]; 
class=[ones(trn1,1);1+ones(trn2,1)]; 

  

s=svmtrain(Xtrain,class,'Method','SMO','Kernel_function','rbf','showplot',1); 

  
Xtest=[X1(trn1+1:1000,:);X2(1+trn2:1000,:)]; 
p=svmclassify(s,Xtest) 

  
q=[ones(1000-trn1,1);1+ones(1000-trn2,1)]; 
miscl=sum(abs(p-q)); 
accuracy=100-100*miscl/(1000-trn1+1000-trn2) 

 

%Neural network script file for spiral data 

clear all 
close all 
clc 

  
%Creating a variable running from 0-4pi 
t=linspace(1,4*pi,1000)'; 
r1=sqrt(t); 
r2=-sqrt(t); 

  
%Variables to create spiral path 
for i=1:length(t) 
    x1(i)=r1(i)*cos(t(i)); 
    y1(i)=r1(i)*sin(t(i)); 
    x2(i)=r2(i)*cos(t(i)); 
    y2(i)=r2(i)*sin(t(i)); 
end 

  
X1=[x1' y1']'; 
X2=[x2' y2']'; 

  
%Preparing a sampled set of train-data from original data 



j=1; 
k=1; 
for i=1:length(X1) 
    if(mod(i,10)==0) 
        X1_new(:,j)=X1(:,i); 
        X2_new(:,j)=X2(:,i); 
        j=j+1; 
    else 
        X11_new(:,k)=X1(:,i); 
        X21_new(:,k)=X2(:,i); 
        k=k+1; 
    end 
end 
plot(X1_new(1,:),X1_new(2,:),'x') 
hold on 
plot(X2_new(1,:),X2_new(2,:),'ro') 

  
%Prepare a set of testing data and target data 
ntrain = length(X1_new); 
dim = 2; 
traindata = [X1_new X2_new]; 
testdata = [X11_new X21_new]; 
ntest = length(X1)-ntrain; 
targtrain = [ones(1,ntrain) 1+ones(1,ntrain)]; 
targtest = [ones(1,ntest) 1+ones(1,ntest)]; 

  
%Compute number of misclassified points 
sample_outputs=round(network1_outputs); 
count=0; 
for i=1:ntest 
    if(sample_outputs(i)==2) 
        count=count+1; 
    end 
end 
for i=ntest:length(targtest) 
    if(sample_outputs(i)==1) 
        count=count+1; 
    end 
end 

  
%Accuracy 
accuracy = 100*(length(testdata)-count)/length(testdata) 

 

 

 

 

 

 

 



Question III 

Aim: 

To design classifiers using Parzen window, K-nearest neighbor and nearest neighbor techniques 

using the same data as that used in the previous task, and compare the performances of the three 

approaches. 

Introduction: 

The Parzen window technique is one of the very robust techniques available for pattern 

classification. It is one of those techniques that compute the probability density function of the 

data for data classification. In this technique, we define a window function φ, which has a value 

only within a particular range, and is zero elsewhere. Using this, we calculate the estimate the 

densities using the following equation as 
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1 1
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n
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                (2) 

Here 
nh controls the size of the window, and has an important bearing on the performance if a 

rectangular window is used. 

The k-nearest neighbor (KNN) technique is a very simple yet effective technique for pattern 

classification. Objects are classified based on a majority vote of its neighbors, such that the 

object is assigned to that particular class which is most commonly present amongst its neighbors. 

K is a positive integer, and is usually kept small. In the event of k=1, this algorithms gets 

transformed into the nearest neighbor algorithm, which is a special case. Usually, it is advisable 

to keep K as an odd number, so that conflicts will not arise due to an equal number of votes for 

either class. 

Procedure: 

While performing experiments with Parzen windows, both rectangular and Gaussian windows 

were taken into consideration. It is instructive here, to explore the case where no points fall 

inside the window for a given
nh , or if there are an equal number of points from either class 



within the window. In such cases, conflicts are usually resolved using priori probabilities of each 

class. However, since we assume here that both classes under consideration have equal priori 

probabilities, we resolve conflicts using a flip of a coin. This is practically done using a random 

number generator, that generates randomly one of two values (1,2). We decide on the class of the 

object based on the outcome of this RV generator. 

Results and Discussion: 

Let us now discuss the results so obtained for the experiments conducted. The remainder of this 

section is organized as follows. We first develop the results for Parzen windows technique, 

followed by the k-nearest neighbor technique. The nearest neighbor technique is discussed as a 

special case. 

Case 1 

First consider using the Parzen Window Technique for 2-D well separated data. Experiments for 

different values of “window” size were conducted for both Gaussian and Rectangular windows. 

Following are the results: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Class I Class II 

Mean [ 1 1 ] [ 4 3 ] 

Variance 
0.8 0.07

0.07 0.5
 

1 0.5

0.5 1
 

   %training  

H 

10 35 65 90 

G R G R G R G R 

0.15 95.83 94.05 95.77 95.0 96.14 95.14 95.0 94.5 

0.30 95.89 90.06 96.07 94.38 96.29 94.00 95.0 93.5 

0.50 95.94 78.17 96.0 88.39 95.71 91.42 95.5 93.0 

0.75 95.78 62.28 95.85 76.31 95.14 82.29 94.0 84.0 



The following are the plots generated for the h=0.75. We have plotted the classification of data 

for varying proportions of training data, for both rectangular and Gaussian windows.                                                                             

 

Fig20: Training data and misclassified points for different proportions of training data using Parzen windows 



 

Case 2 

 

We now consider the case of 2-D data that overlap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We find that the accuracy rates are not very high for all the window sizes, with the highest 

being just over 80% for Gaussian window. This is owing to the overlapping of the data sets. 

Also we observe that some of the extremal points have been misclassified. This is because, 

even in such cases, they may have been those points which would not have had neighbors for 

that particular window size.  

Further, there are also points in the border that were not misclassified, even though they are 

farther away from their classes. The reason for this is these points are training points, and 

NOT test points, and hence don’t appear to be misclassified.  

Following is the results for accuracy for rectangular and Gaussian windows of varying sizes 

for a value of h=1.25. 

 Class I Class II 

Mean [ 1 1 ] [ 2 2 ] 

Variance 
0.8 0.07

0.07 0.5
 

0.7 0.21

0.21 0.56
 

   %training 

 H 

10 35 65 90 

G R G R G R G R 

2 78.56 78.83 79.0 79.07 79.29 78.42 75.0 74.0 

1.25 80.17 78.94 78.85 78.31 78.29 78.14 81.5 80.0 

0.75 79.72 77.95 78.54 77.54 77.86 77.29 81.0 81.0 

0.50 79.76 74.44 78.62 76.77 78.0 76.58 81.0 79.0 



 

Fig21: Training data and misclassified points for different proportions of training data using Parzen windows 



Case 3 

 

Let us consider now 3-D data sets that are overlapping. The motivation behind going in for 

overlapping data sets is the observation that all the pattern classifiers perform exceptionally well 

under non-overlapping data, and this gives us very little scope for comparison of performance. 

 

 

 

 

 

 

 

 

%Training 

H 

10 35 65 90 

R G R G R G R G 

0.5 58.61 91.72 74 92.6 80.71 93.42 82 92.5 

1 82 91.33 89.76 92.30 91.14 92.42 92.5 91 

1.5 88.94 90.11 92.93 91.46 93.42 92 92.5 89.5 

2 91.5 89.33 92.92 90.38 93.57 89.85 92.5 88.5 

 

Lets us also consider a few other cases, for academic interests, to see the performance of Parzen 

windows for other 3-d data sets. 

 

 

 

 

 

 

 

 

 Class I Class II 

Mean [ 3 3 3 ] [ 1 1 1 ] 

Variance 

1 0 0

0 2 0

0 0 5

 

1 0 0

0 2 0

0 0 5

 

 Class I Class II 

Mean [ 3 3 3 ] [ 1 1 1 ] 

Variance 

1.5 0 0

0 2.5 0

0 0 5.5

 

1 0 0

0 2 0

0 0 5

 



%Training 

H 

10 35 65 90 

R G R G R G R G 

0.15 50 82.83 50.4 84.53 50.57 85.14 50 87.00 

0.5 53.6 86.61 60.15 88.38 63 88.4 63.5 90 

1 67.38 88.11 80.23 88.07 83 88.14 86 88 

1.5 78.33 87.77 85.15 87.53 85.71 87.57 88 87.5 

2 83.72 87.44 87.23 87.07 87.28 87.14 88 86.5 

 

We observe a decrease in the accuracy percentages with an increase in the amount of 

overlapping, caused by an increase in the variance of data. This is perfectly in order with the 

performance of the classifiers seen in the previous sections. 

We shall plot the data sets and misclassified points, for a value of h=0.5. We here note that a 

large number of correct samples are misclassified as there are no neighbors in the window 

leading to the flip of a coin method as we have assumed equal priors.  

 

 

         

       Fig21: Training data and misclassified points                       Fig22: Error plot for Parzen window, h=0.50 

 

 

 



Now consider other 3-D data sets with more overlapping by shifting the mean 

 

 

 

 

 

 

 

   %Training 

H 

10 35 65 90 

R G R G R G R G 

0.25 50.56 60.67 50.92 67.58 50.28 68.12 53 73 

0.5 50.88 67.55 53.76 72.23 55.71 72.14 56.5 73 

1 57.94 71.67 63.23 73.53 66.85 73.71 70 74.5 

2 69.27 71.72 72.46 75.38 76.71 73.85 78.5 74.5 

 

As expected, and as is seen from the previous cases, the same argument hold for this case too, in 

that the accuracy shows a sharp decrease due to the presence of large overlapping in the data 

sets. 

We shall now plot the data sets and the misclassified points for a value of h=1, by varying the 

training data‟s proportion, and the error plot. 

 

Fig23: Error plot for Parzen window, h=0.50 

 Class I Class II 

Mean [ 2 2 2 ] [ 1 1 1 ] 

Variance 

1 0 0

0 2 0

0 0 5

 

1 0 0

0 2 0

0 0 5

 



 

Fig24: Training data and misclassified points 



We shall now look at the experimental results for the k-nearest neighbor technique. We have 

operated on exactly the same data as that used in Parzen Window technique 

Case 4 

As usual, we first consider 2-D well separated data, and the results are tabulated for the nearest 

neighbor (K=1) and other values of K. 

 

 

 

 

 

 

 

 

 

 

 

Experiments were also conducted by changing the distance metric from „Euclidian‟ to „city 

block‟ distance. However, we do not observe any significant improvement in doing so. 

 

 

 

 

 

 

 Class I Class II 

Mean [ 1 1 ] [ 4 3 ] 

Variance 
0.8 0.07

0.07 0.5
 

1 0.5

0.5 1
 

%training 

K 

10 35 65 90 

1 91.00 91.07 88.57 87.0 

3 90.89 90.00 88.28 89.0 

5 91.11 91.07 88.57 89.0 

7 91.22 91.38 89.71 88.0 

%training  

K 

10 35 65 90 

1 88.67 86.61 85.43 88.0 

3 89.22 88.15 86.28 90.0 

5 89.88 90.15 88.0 87.0 

7 90.56 89.86 89.14 86.0 



The following are the plots of KNN with Euclidian distance metric K=1 

 

Fig25: Training data and misclassified points 

Case 5 

Consider next 2-D data sets that are overlapping, as was experimented with in the previous case. 

The data is given as: 

 

 

 

 

 

 

 

 Class I Class II 

Mean [ 1 1 ] [ 2 2 ] 

Variance 
0.8 0.07

0.07 0.5
 

0.7 0.21

0.21 0.56
 



 

 

 

 

 

 

 

As expected there is a decline in the accuracy rates, owing to an increase in the overlapping of 

data. We shall now plot the data sets and the misclassified points for a value of k=7. Figure 26 

represents the plots for the above mentioned cases. 

 

Fig26: Training data and misclassified points 

 

 %training  

K 

10 35 65 90 

1 43.89    38.15 42.57 47.0 

3 53.11 45.23 50.28 60.0 

5 54.33 50.46 52.57 59.0 

7 59.67 56.0 56.28 61.0 



Case 6 

Consider next 3-D data sets that overlap to an extent. The data and the accuracy tables are given 

below. We find that the performance of this technique is pretty good, with accuracy percentages 

ranging from 82-87%. Plots are given for 2 cases of training data variation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig27: Training data and misclassified points 

 Class I Class II 

Mean [ 3 3 3 ] [ 1 1 1 ] 

Variance 

1 0 0

0 2 0

0 0 5

 

1 0 0

0 2 0

0 0 5

 

%Training 

K 

10 35 65 90 

1 81 81.53 82.85 87 

3 84.67 85.23 86 86 

5 85.11 86.15 86 86 

7 85.33 85.69 86.28 87 

9 85.44 85.69 86.85 86 

11 84.89 86.16 87.14 85 

13 85 86.46 87.42 86 



Case 7 

We shall see here the plots for 3-D data set II and set III. The results for set III are very poor, as 

we will see. We shall also have a corresponding look at the results of Parzen window, so that we 

can get to know the better of the two techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Class I Class II 

Mean [ 3 3 3 ] [ 1 1 1 ] 

Variance 

1.5 0 0

0 2.5 0

0 0 5.5

 

1 0 0

0 2 0

0 0 5

 

%Training 

K 

10 35 65 90 

1 65.67 68.61 67.42 72 

3 73.67 73.38 75.71 76 

5 74.55 76 75.42 81 

7 73.89 75.38 76.86 80 

9 74.33 77.23 77.14 80 

11 74.55 77.69 75.71 82 

13 75.44 77.69 76.28 85 

 Class I Class II 

Mean [ 2 2 2 ] [ 1 1 1 ] 

Variance 

1 0 0

0 2 0

0 0 5

 

1 0 0

0 2 0

0 0 5

 



%T raining 

K 
10 35 65 90 

1 29.44 31.23 30.28 33 

3 39.77 37.23 38.85 38 

5 40.77 39.23 35.71 39 

7 42.77 38.15 43.42 47 

9 43.11 42.76 41.42 47 

 

The results, as can be seen are very poor, as there is a heavy amount of overlapping in the data.  

Let us have a look at Figures 23 and 24, and look at the corresponding table, which reveals that 

the Parzen window performs much better for the same data set. This is because for extremely 

overlapping datasets, there is a very high chance that the nearest neighbor could be a data point 

from the wrong class, and so the k-nearest neighbors technique succumbs to this grey point. 

Hence, these are the conclusions that may be drawn from this experiment . 

 Parzen window using Gaussian kernel is better than the one with rectangular kernel, 

which exhibits a heavy dependency on the size of the window h. 

 K-NN performs better than nearest neighbor technique, and is more robust. 

 K-NN is better than Parzen window operating with rectangular kernel as it doesn‟t 

misclassify extremal points. This is because, the extremal points, owing to their closeness 

to the correct class, can never get misclassified. 

 Also, from our observation, we find that the Parzen window perform better than k-NN. 

This may be quite contrary to the existing theories, as the data that we have experimented 

with is one with lots of overlapping. This is because, the motivation was to experiment 

and study the performances of the classifiers for these types of data, as we were able to 

discern little about the performance of these classifiers on perfectly separable data. 

The following segment shows the MATLAB routine for this experiment. 

 



MATLAB CODE: 

 

%Parzen window technique 

function [e1 e2]=simulate_parzen(X1,X2,h) 

  

%variables to hold size of input data 
[m n]=size(X1); 
[F d]=size(X2); 
z=1; 

  
%Gives different training percentages 
H=[100 350 650 900];  

  

%2-D case 
if(d==2) 
    for I=1:4 
        plot(X1(:,1),X1(:,2),'.');hold on;plot(X2(:,1),X2(:,2),'o'); 
        

e1(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m,:);X2(H(I)+1:m,:)],[ones(

m-H(I),1);2*ones(m-H(I),1)],h,1); 
        figure 
        plot(X1(:,1),X1(:,2),'.');hold on;plot(X2(:,1),X2(:,2),'o'); 
        

e2(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m,:);X2(H(I)+1:m,:)],[ones(

m-H(I),1);2*ones(m-H(I),1)],h,2); 
        z=z+1; 
    end 
end 

  
%3-D case 
if(d==3) 
    for I=1:4 
        plot3(X1(:,1),X1(:,2),X1(:,3),'.');hold 

on;plot3(X2(:,1),X2(:,2),X2(:,3),'o'); 
        

e1(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m,:);X2(H(I)+1:m,:)],[ones(

m-H(I),1);2*ones(m-H(I),1)],h,1); 

         
        figure 
        plot3(X1(:,1),X1(:,2),X1(:,3),'.');hold 

on;plot3(X2(:,1),X2(:,2),X2(:,3),'o'); 
        

e2(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m,:);X2(H(I)+1:m,:)],[ones(

m-H(I),1);2*ones(m-H(I),1)],h,2); 
        z=z+1; 
    end 
end 

  
plot(H,e1(1:z-1));hold on;plot(H,e2(1:z-1),'r') 

  
%Compute accuracy 
accuracy_rectangular=100-e1 
accuracy_gaussian=100-e2 

  
%function that performs Parzen window technique 



function[error]=parzen(X1,X2,Xtest,group,h,ch) 

  
%variables to hold size of input data 
[m d]=size(X1); 
[p d]=size(X2); 
[Q R]=size(Xtest); 

  
%counts the number of misclassified points 
misc=0; 

  
%Rectangular Window 
if(ch==1) 
    for k=1:Q 
        px0w1=0; 
        px0w2=0; 
        for i=1:m 
            count=0; 
            for j=1:d 
                %applying condition 
                if(abs((X1(i,j)-Xtest(k,j))/h) <0.5) 
                    count=count+1; 
                end 
            end 
            if(count==d) 
                px0w1=px0w1+1; 
            end 
        end 
        for i=1:p 
            count=0; 
            for j=1:d 
                %applying condition 
                if(abs((X2(i,j)-Xtest(k,j))/h) <0.5) 
                    count=count+1; 
                end 
            end 
            if(count==d) 
                px0w2=px0w2+1; 
            end 
        end 

  

        %Making a decision; use a toss of a coin to resolve conflicts/ties 
        if(px0w1>px0w2) 
            class=1; 
        elseif(px0w1<px0w2) 
            class=2; 
        else 
            chance=randperm(2); 
            if(chance(1) == 1) 
                class =1; 
            else 
                class =2; 
            end 
        end 

  

        %print misclassified points in red 
        if(class~=0 && group(k)~=class) 



        if(d==2),    plot(Xtest(k,1),Xtest(k,2),'rX');hold on  
        end 
        if(d==3),    plot3(Xtest(k,1),Xtest(k,2),Xtest(k,3),'rX');hold on  
        end 
            misc=misc+1; 
        end 

         

         
    end 
end 

  
%Gaussian Window 
if(ch==2) 
    for k=1:Q 
      px0w1=0; 
      px0w2=0; 
        for i=1:m 
            px0w1=px0w1+exp(-(0.5)*((X1(i,:)-Xtest(k,:))*(X1(i,:)-

Xtest(k,:))')/(h^2)); 
        end 
        for i=1:p 
            px0w2=px0w2+exp(-(0.5)*((X2(i,:)-Xtest(k,:))*(X2(i,:)-

Xtest(k,:))')/(h^2)); 
        end 

  
        %Making a decision; use a toss of a coin to resolve conflicts/ties 
        if(px0w1>px0w2) 
            class=1; 
        else 
            class=2; 
        end 

  
        %print misclassified points in red 
        if(group(k)~=class) 
          if(d==2),  plot(Xtest(k,1),Xtest(k,2),'rX');hold on 
          end 
          if(d==3) 
              plot3(Xtest(k,1),Xtest(k,2),Xtest(k,3),'rX');hold on; 
          end 
            misc=misc+1; 
        end 
    end 
end 

  
error=(misc/Q)*100; 
hold off 

 

 

 

 

 



%function that performs knn technique 

function simulate_knn(X1,X2,k) 

  
%variables to hold size of input data 
[m n]=size(X1); 
[F d]=size(X2); 
z=1; 

  
%Gives different training percentages 
H=[100 350 650 900]; 

  
if(d==2) 
    for I=1:4 
        plot(X1(:,1),X1(:,2),'.');hold on;plot(X2(:,1),X2(:,2),'o'); 
        Xtrain=[X1(1:H(I),:);X2(1:H(I),:)]; 
        Xtest=[X1(H(I)+1:m,:);X2(H(I)+1:m,:)]; 
        group=[ones(H(I),1);2*ones(H(I),1)]; 
        expec=[ones(m-H(I),1);1+ones(m-H(I),1)]; 
        cl=knnclassify(Xtest,Xtrain,group,k); 
        for t=1:length(cl) 
            if(cl(t)-expec(t)~=0) 
                plot(Xtest(t,1),Xtest(t,2),'rX'); 
            end 
        end 
    e(z)=(sum(abs(cl-expec))/(m-H(I)))*100; 
    z=z+1; 
    figure 
    end 
end 
if(d==3) 
    for I=1:4 
        plot3(X1(:,1),X1(:,2),X1(:,3),'.');hold 

on;plot(X2(:,1),X2(:,2),X2(:,3),'o'); 
        Xtrain=[X1(1:H(I),:);X2(1:H(I),:)]; 
        Xtest=[X1(H(I)+1:m,:);X2(H(I)+1:m,:)]; 
        group=[ones(H(I),1);2*ones(H(I),1)]; 
        expec=[ones(m-H(I),1);1+ones(m-H(I),1)]; 
        cl=knnclassify(Xtest,Xtrain,group,k,'cityblock'); 
        for t=1:length(cl) 
            if(cl(t)-expec(t)~=0) 
                plot3(Xtest(t,1),Xtest(t,2),Xtest(t,3),'rX'); 
            end 
        end 
        e(z)=(sum(abs(cl-expec))/(m-H(I)))*100; 
        z=z+1; 
        figure 
    end 
end 

  

figure 
plot(e(1:z-1)) 

  
%Accuracy 
accuracy=100-e 
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