
Question 1

Aim:

To perform an experiment by devising a fisher discriminant classifier to classify different classes

of data, and to make a modification in the design and verify the outcomes, and finally to draw

conclusions from the same

Introduction:

The fisher discriminant is one of the popularly used techniques for pattern classification cum

recognition. It deals with the projection of data with higher dimensionality into lower subspaces,

so that faster and easier computation is facilitated. One should not that even though samples

could form well-separated, compact clusters in d-space, projection onto an arbitrary line will

usually produce a confused mixture of samples from all of the classes, and thus poor recognition

performance. However, by moving the line around, we might be able to find an orientation for

which the projected samples are well separated. This is exactly the goal of classical discriminant

analysis.

The equation of the Fisher linear discriminant function is given [1] as follows:

~ ~
2

1 2

~ ~
2 2

1 2

| |
()

| |

m m
J w

s s

 (1)

which on simplification yields the Fisher‟s linear discriminant - the linear function yielding the

maximum ratio of between-class scatter to within-class scatter, given by

1

1 2()Ww S m m , where
1 2WS S S ,

1 2,S S being the scatter matrices and
WS is called the

within class scatter matrix. Our aim hence would be to maximize w so as to obtain the best

possible discriminating surface.

Procedure:

Let us run through the steps that were followed during the experimentation process. Firstly, we

chose to use artificially generated data so as to enhance flexibility in the experimentation

process. This was done using the „mvnrnd’ command in Matlab®. Two sets of data were

generated using this, for varying degrees of overlapping and scattering. This was first tested

using the Fisher linear discriminant, followed by what is called the modified fisher discriminant,

which was obtained by modifying equation (1), given by
1 2()w m m . Accuracies of both were

compared and tabulated.

We shall now describe the method that was used in finding out the line of separation in 2 -D or

the plane of separation in 3-D. We may recall from [1] that
0 0Tw x w , where

0w is a constant

that involves w and the prior probabilities. After obtaining
0w , we can compute the separating

line with the knowledge that it is of the form bx ay k , given that w is of the

form ax by c . In case of 3-D, if w be the plane of projection, we first project the data (x) to a

plane
nw , which is a plane perpendicular to w . This projection of x is then subtracted from x,

which will give us the equation of the plane of projection.

Results and Discussion:

Simulations were carried out in MATLAB®, and the results were recorded. We shall now

discuss results so obtained for several different cases, with respect to the distribution of data. The

discussion that follows, will deal with both the Fisher linear discriminant and its modified

version.

Case 1

Here we deal with 2-D data that are well separated in space.

Method Accuracy %

Fisher 100

Modified fisher 100

 Class I Class II

Mean [1 2] [-2 -4]

Variance
0.4 0

0 0.4
 0.4 0

0 0.4

Fig1: Results & Discussion, Case 1

Figure 1 shows the projections and separation hyper plane for the fisher discriminant and for the

modified fisher method respectively. As we can see, the modified fisher discriminant produces a

separation surface that is perpendicular to the line joining the means of the two classes of data.

This is a typical case wherein the error is zero in spite of w being different. We get cent percent

accuracy rates in both cases because the classes are well separated out in space. Hence it is not

possible to investigate the better classifier of these two, for this case.

Case 2

Here we shall examine the case of 2-D separated data which lead to an error in classification

 Class I Class II

Mean [5 6] [2 6]

Variance
1 0

0 1

0.1 0

0 0.1

Method Accuracy %

Fisher 100

Modified fisher 96.15

Fig2: Results & Discussion, Case 2

As shown in figure 2, the modified Fisher discriminant underperforms as compared to the fisher

discriminant, as it draws a line of separation perpendicular to the one joining the means where

that is not supposed to be the case. Hence this case exposes the lacuna present in the modified

Fisher classifier technique.

Case 3

We now examine the case where we have 2-D OVERLAPPING data, and study the

performances of both the classifiers.

 Class I Class II

Mean [2 8] [6,5]

Variance
8.48 0.05

0.05 7.6

8.64 0.15

0.15 8.53

Method Accuracy %

Fisher 83.25

Modified fisher 83.15

Fig3: Results & Discussion, Case 3

As shown in figure 3, the fisher and the modified fisher methods perform similarly on these

overlapping data sets, with the accuracy of classification very close to each other. This is also

partially due to the fact that the data here is such that the direction of minimum variance is the

same as that joining the means of the data.

Case 4

All the previously dealt with cases were ones that used Gaussian data. We shall now experiment

with 2-D uniform data. The following are the results obtained:

 Class I Class II

Mean [25 0] [-25 0]

Variance
1026.9 6.3

6.3 16.9

1027.1 4.4

4.4 17.1

Method Accuracy %

Fisher 83.97

Modified fisher 100

Fig4: Results & Discussion, Case 4

The data and its projection (enlarged view for the modified Fisher‟s method)

Fig5: Results & Discussion, Case 4

This is rather a peculiar case, the motivations for which arose from the fact that there would exist

a particular case in which the modified fisher method would outperform the Fisher method.

Hence two uniformly distributed data sets as shown in figure 5 were generated. These were

tested using both classifiers and the modified fisher discriminant outperformed its predecessor.

This is because this case is tailor made for the modified Fisher method, in that, the line of

separation is exactly perpendicular to the line joining the means of the data. This case however is

of interest from the academic perspective alone, and rarely does one come across such data in

real time.

Case 5

We shall now switch to 3-D, and record the results. We here deal with well separated data in

which both yield similar results

Plotted below are the figures of both the discriminators. As usual, the fisher method is shown in

the left and the modified method is on to the right. We see that both perform extremely well, as

the data here is very well separated, as was in case 1.

 Class I Class II

Mean [1.0285 1.9437 3.0294] [-0.9586 -2.0054 -2.9299]

Variance

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

Method Accuracy %

Fisher 100

Modified fisher 100

Fig6: Results & Discussion, Case 5

Case 6

We shall now examine cases in which we see that the Fisher method clearly outperforms the

modified Fisher method.

 Class I Class II

Mean [0.9912 2.0148 3.0280] [-0.9889 0.9819 1.9961]

Variance

0.8 0.2 0.1

0.2 0.5 0.4

0.1 0.4 0.9

0.8 0.2 0.1

0.2 0.5 0.4

0.1 0.4 0.9

Method Accuracy %

Fisher 89.35

Modified Fisher 88.15

Fig7: Results & Discussion, Case 6

The above figures show the performances of the two methods for overlapping data sets. The next

example will display the superiority in the performance of Fisher, for non-overlapping data as

well.

 Data 1 Data 2

Mean [0 0 0] [2 2 0]

Variance

7 0 0

0 0.05 0

0 0 0.08

0.08 0 0

0 0.08 0

0 0 0.08

Method Accuracy %

Fisher 100

Modified Fisher 89

Fig8: Results & Discussion, Case 6

The above figures show the performances of the two methods for non-overlapping data sets,

from which we clearly see that the Fisher method surpasses the modified fisher method in

performance.

To conclude, one can say that from the experiments performed, it is possible to say that the

Fisher method is the superior to the modified Fisher method. Although we have shown a case

which runs contrary to the previous conclusion, such cases are extremely rare to occur, and even

in this case, it was tailor-made for the sake of experimentation. Hence we can finally conclude

that the Fisher linear discriminant is superior to its modified version.

The following segment shows the MATLAB routine for this experiment.

MATLAB CODE:

%Fisher Discriminant function for 2 and 3D data. X1 , X2 are data vectors
%with each row being a feature vector . d is the dimesnsion size and k is
%the offset for plotting in 3-D

function fisher(X1,X2,d,k,rt)

%variables to hold size of input data
[m n]=size(X1);
m1=zeros(1,d);
m2=zeros(1,d);

%Checking for data's dimensionality
if(d==3)
plot3(X1(:,1),X1(:,2),X1(:,3),'r+:');
hold on
plot3(X2(:,1),X2(:,2),X2(:,3),'g*:');
end

if(d==2)
plot(X1(:,1),X1(:,2),'m+');
hold on
plot(X2(:,1),X2(:,2),'k*');
end

m1=mean(X1)
m2=mean(X2)
X=[X1;X2];

%glm stores the global mean
glm=mean(X)
S1=cov(X1)
S2=cov(X2)
SW=S1+S2;

%Compute Weight function
w=(SW^-1)*(m1-m2)'; %change this to (m1-m2)’ for modified fisher

if(d==3)
plot3(w(1)/(sqrt(w(1)^2 + w(2)^2 + w(3)^2)),w(2)/(sqrt(w(1)^2 + w(2)^2 +

w(3)^2)),w(3)/(sqrt(w(1)^2 + w(2)^2 + w(3)^2)),'X');
end
if(d==2)
 plot(w(1)/(sqrt(w(1)^2 + w(2)^2)),w(2)/(sqrt(w(1)^2 + w(2)^2)),'X');
end
magw=sqrt(w'*w);
vecw=w/magw;

if(d==3)
vecw2=[-vecw(2) vecw(1) 0];
mag2=sqrt(vecw2*vecw2');
vecw2=vecw2/mag2;

end

if(d==3)
for i=1:m
 vec1(i,:)=X1(i,:)-(X1(i,:)*vecw2')*vecw2;
 vec2(i,:)=X2(i,:)-(X2(i,:)*vecw2')*vecw2;
end
end

%variables used for plotting
xmin=min(X(:,1));
xmax=max(X(:,1));
ymin=min(X(:,2));
ymax=max(X(:,2));

%plots the plane in between classes
if(d==3)
 x=[xmin:0.1:xmax];
 y=[ymin:0.1:ymax];
 for i=1:length(x)
 for j=1:length(y)
 z(i,j)=(-w(1)*x(i)-w(2)*y(j) +glm*w)/w(3);
 end
 end
[p q]=size(z);
mesh(y,x,z);
end

%Computes number of misclassified points
if(d==2)
for i=1:m
 vec1(i,:)=(X1(i,:)*vecw)*vecw';
 vec2(i,:)=(X2(i,:)*vecw)*vecw';
end
end
misc1=0;
misc2=0;
if(d==3)
 for i=1:m
 t1(i,:)=vec1(i,:)+k*vecw2;
 t2(i,:)=vec2(i,:)+k*vecw2;
 if(X1(i,:)*w - glm*w < 0)
 misc1=misc1+1;
 end
 if(X2(i,:)*w - glm*w >0)
 misc2=misc2+1;
 end
 end
end

if(d==3)
plot3(t1(:,1),t1(:,2),t1(:,3),'+','Color','b');
plot3(t2(:,1),t2(:,2),t2(:,3),'x','Color','g');
end

%Compute accuracy

misc1=0;
misc2=0;
w0=glm*vecw
r=w0*vecw';
if(d==2)
 plot(r(1),r(2),'X');
 line([(r(1)-k*vecw(2)),(r(1)+rt*vecw(2))],[(r(2)+k*vecw(1)),(r(2)-

rt*vecw(1))]);
 plot(vec1(:,1),vec1(:,2),'b+:');
 plot(vec2(:,1),vec2(:,2),'gx:');
 for i=1:m
 if(X1(i,:)*w - glm*w < 0)
 misc1=misc1+1;
 end
 if(X2(i,:)*w - glm*w >0)
 misc2=misc2+1;
 end
 end
 accuracy=100*(1-(misc1+misc2)/(2*m))
end

Question II

Aim:

To obtain a set of training data and divide the training data into training data and test data, and

experiment with designing a classifier using the neural network approach and the support vector

machine approach, and to compare the results so obtained.

Introduction:

Neural Networks are powerful, biologically inspired tools used for pattern classification. When

we talk of neural networks in the context of pattern classification, we often mean artificial neural

networks, or ANN, that are made of interconnected artificial neurons. These neurons mimic the

performance of the biological neurons.

Fig9: Artificial neural networks

Another very important tool used for pattern classification and supervised learning methods used

for classification and regression, that belongs to the family of generalized linear classifiers is the

Support vector machine (SVM). They can also be considered a special case of Tikhonov

regularization. The philosophy behind the working of SVM is to minimize the empirical

classification error and maximize the geometric margin, by the virtue of which it is alternatively

termed as maximum margin classifier.

http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Tikhonov_regularization
http://en.wikipedia.org/wiki/Tikhonov_regularization
http://en.wikipedia.org/wiki/Tikhonov_regularization

Procedure:

Before we start explaining the experiments, let us have a first-look at the neural networks and

support vector machine tools that are available in Matlab. These tools were used in the process of

experimentation.

SVM tool in Matlab®.

Described below are the commands used in the experiments:

Command Input Functions Comments

svmtrain

-test vectors,

-the group they belong to

-the kernel function

-the order of the polynomial

(for polynomial kernel)

-display plot option

-show-plot option

plots the data,

labels the classes,

and draws the

separation hyper-

surface

Of the several kernel

functions that are available,

we have experimented with

Radial Basis function and

the polynomial kernel of

varying orders.

svmclassify
-structure returned by the above

function

-classifies the data

as belonging to

either class 1 or 2,

and returns a

vector containing

classes of test data

-The vectored that is

returned is used to measure

the accuracy of the SVM.

Neural Network tool in Matlab®

Matlab® provides a Graphical User Interface (GUI) Tool, for working with neural networks. It

works on the basis of accepting inputs from the user, in the form of data and parameters. This

provides an extremely flexible tool to the user, wherein several parameters of the network can be

changed, so that the desired performance can be achieved. Some of the parameters that can be

modified by the user are the activation function, the initial weights, the training and test data, the

number of epochs and the target data for the given training set.

The user inputs the training data, which is a (d x n) matrix, where the dimension of the data is

given by d, and the number of training vectors is given by n. The target data is actually the data

that contains the values that ought to be the output upon correct classification. The error is

calculated as the difference between the actual output and the target output. Once this data is

given we can “create” the network by specifying the following:

 Type of network

 Training function

 Adaption Learning Function

 Number of layers

 Number of neurons per layer

 Transfer Function for neurons.

Let us look at some of the snapshots of the nntool in Matlab.

Fig10: NNtool in Matlab

Fig11: NNtool in Matlab

Fig12: NNtool in Matlab

The following table gives us the details of the parameters used during the experimentation

process. Parameters such as the number of hidden layer neurons and the number of time-epochs

used for convergence were varied throughout the experiment.

Network type

feed forward back propagation

Training function LM function

Adaption Learning

function
LEARNGDM function

Error performance Mean Square Error

Activation function Tan-sigmoid

hidden layer neurons Varying throughout the experiment

time-epochs Varying throughout the experiment

Results and Discussion:

Experiments were conducted to evaluate the performance of both classifiers. Initially, 1000

points of each class were generated. Next, these data points were split as training data and testing

data, and the percentage split was varied as 10-90, 35-65, 65-35 and 90-10 respectively. For

SVM, the performance evaluation was done for different kernels. As for the neural networks, the

number of neurons present in the hidden layer was varied. Shown below are tables comprising of

data for SVM, followed by figures. Subsequently, we also take a comparative look at the

performances of neural networks and SVM.

Case 1

We consider here 2-D data that are overlapping. The table below shows the means and variances

of the two classes, and this is followed by the plots for SVM classification.

Fig13: Training data and support vectors for different proportions of training data using Radial Basis Functions

 Class I Class II

Mean [1 1] [4 3]

Variance
0.8 0.07

0.07 0.5

1 0.5

0.5 1

of Training Samples 100 350 650 900

Accuracy Neural Network

(5 neurons in hidden layer)
93.72 95.42 96.85 94.83

Accuracy- RBF Kernel 94.9444 94.8462 95.4286 96

Accuracy 2
nd

 degree poly. Kernel 94.6667 94.7692 94.1429 94.5000

Accuracy 3
rd

 degree poly. Kernel 94.5556 94.6154 94.2857 95

A look at the data chosen above would reveal that the data have separated means, but the

variances chosen result in an overlap between the classes. Classification using Support Vector

machines results in an accuracy percentage in the range of 94-96%, which is fairly high. Also,

there is no appreciable difference in the performances of SVM using RBF and the polynomial

kernel (of order 2 and 3). Thus, we can say that for data sets that don‟t have much of an overlap,

SVM performs well, giving good accuracy rates.

For the case of ANN with 5 neurons, the accuracy rate starts at 93% for a training set of 100

points, increases gradually with an increase in the amount of training data to around 97%, and

then dips when the amount of training data increases drastically to 900 points. This is

understandable, as it means that the performance improves with the increase in training data, as

the system becomes “more acclimatized” to the data set, and starts performing better. However,

with a huge training data set, the network faces what is known as “overtraining hazard”, because

the network starts “following” the data curve too closely. Further, although not quantified, we

also observed that the neural network took appreciably more time to converge than its SVM

counterpart. This can be considered a potential glitch for problem involving large data sets, or

when the margin of error for convergence is very small.

Case 2

We now consider the case in which we have 2D data sets that are more overlapping, as a

consequence of having closely located means.

Fig14: Training data and support vectors for different proportions of training data using Radial Basis Functions

 Class I Class II

Mean [1 1] [2 2]

Variance
0.8 0.07

0.07 0.5

0.7 0.21

0.21 0.56

of Training Samples 100 350 650 900

Accuracy Neural Network 76.67 77.61 80.14 50.0

Accuracy - RBF Kernel 74.7222 75.0769 75.7143 78

Accuracy 2
nd

 degree poly. Kernel 74.8333 74.6923 73.7143 77

Accuracy 3
rd

 degree poly. kernel 74.0556 73.5385 NC NC

The motivation behind conducting this experiment was to see the performance of the tools when

we had overlapping data. In this case support vector machines with radial basis functions have a

accuracy between 74 and 78%. Similar performance was obtained for polynomial kernels of 2
nd

and 3
rd

 order. However, we were unable to achieve a convergent value for 3
rd

 order polynomial

kernel operating on 650 and 900 training data points, owing to the inability of the system to

handle large amounts of data. As for the case of neural networks with 5 neurons, a steady

increase in performance is seen with an increase in training data, and as expected, a dip in the

performance for extremely large values of training data.

As is seen above, neural networks perform poorly as compared to SVM for an overly trained

scenario of 90%. However, it performs better that SVM for 65% training data usage. But this

bettered performance comes at the price of increased time requirements in that, neural networks

take a considerable larger amount of time than SVM, which can be an important set-back in

certain applications.

Case 3

We shall now see some more additional cases, by changing the distribution of data, and we shall

also consider the 3-D case.

 Class I Class II

Mean [1 1 1] [3 3 3]

Variance

1 0 0

0 2 0

0 0 5

1 0 0

0 2 0

0 0 5

Here we consider 3D data with more overlapping, by just increasing the variance.

Finally, we consider 3-D data with more overlapping, by shifting the means.

of Training Samples 100 350 650 900

Accuracy Neural Network 68.16 69.31 72.0 71.33

Accuracy (RBF Kernel) 72.22 70.85 72.14 74.50

of Training Samples 100 350 650 900

Accuracy Neural Network 85.55 87.38 88.0 86.32

Accuracy SVM(RBF Kernel) 88.38 89.30 89.29 92.50

 Class I Class II

Mean [1 1 1] [3 3 3]

Variance

1.5 0 0

0 2.5 0

0 0 5.5

1 0 0

0 2 0

0 0 5

of Training Samples 100 350 650 900

Accuracy (RBF Kernel) 87.78 88.85 88.29 87.50

 Class I Class II

Mean [2 2 2] [1 1 1]

Variance

1 0 0

0 2 0

0 0 5

1 0 0

0 2 0

0 0 5

Case 4

We shall now consider a very interesting case, in which we deal with sets of data that are

peculiarly oriented. Motivations for performing such an experiment arose from [2], where

Stanislaw Osowski et.al have compared the performance of SVM and neural networks for data

sets that are oriented spirally. Experiments using such data sets were performed by varying the

angle of orientation, and also by varying the parameters of the neural network. Shown below are

the specifications of the data, followed by the concerned plots for SVM and neural networks.

Initially, experiments were performed by varying the training data without sampling. By this we

mean that if 100 training points are supplied, these 100 points are the first 100 points of the data,

and NOT ones obtained by sampling the data at fixed intervals.

Fig15: Training data and support vectors for different proportions of training data using Radial Basis Functions

of Training Samples 100 350 650 900

Accuracy Neural Network 41.61 45.07 30.71 33.0

Accuracy RBF Kernel 47.89 48.15 20.86 2.50

As seen in the table above, the accuracy of both the neural network and SVM is very poor. In

particular, we note the performance of the SVM at 900 training data points. This gives almost

100% error because, from the figure shown above, the test data points of class one almost fill up

the left of the discriminating hyper-surface, while the test points of class 2 fill up the right side,

which means that the classification becomes entirely wrong for this case.

These shortcomings in classification is largely because of the fact that we have used test and

training data without sampling the given data, which means we leave a lot for prediction and

chance, and the training data does not serve its purpose to “train” the network.

Case 5

We here deal with the case wherein the input data is sampled first, and then split as training and

test data. For example, if we need 100 training points, we sample the input data at one for every

ten data points, thereby obtaining 100 data points for a data set of size 1000 points. Let us now

examine the efficiency of this method.

First we take every 10th sample from the data set, and next, we take every 20th sample from the

data set, and the experiments are performed with polynomial kernel and RBF.

For angle 4π:

Fraction of samples 1/10 1/20

Accuracy Neural Network 25 hidden neurons 99.94 99.95

Accuracy Neural Network 10 hidden neurons 82.77 75.47

Accuracy with 8
th

 degree poly Kernel 99 94.21

Accuracy with RBF Kernel 55.78 56.63

Using a 7th degree polynomial kernel, the accuracy was 98.78%. However, below this, poor

accuracy rates were obtained. This goes on to show that an increase in the spiral angle demands

higher degree polynomials for robust error performances.

Fig16: Training data and support vectors for different proportions of training data using polynomial Functions

Fig17: Training data and support vectors for different proportions of training data using Radial Basis Functions

For angle 2.5π:

Fraction of Samples 1/10 1/5 1/2

ANN acc. with 25 hidden neurons 99.94 99.94 99.94

Accuracy- Neural Network 66.89 76.23 81.33

Accuracy- RBF Kernel 86.50 95.25 96.50

Fig18: Training data and support vectors for different proportions of training data using Radial Basis Functions

Finally, let us have a look at the snapshots of the GUI tools in Matlab that appear as the output,

by making a sample run of NNtool in Matlab.

Error Convergence Curve:

Fig19: NNtool in Matlab

The Neural Network that gets generated based on input parameters:

Fig20: NNtool in Matlab

To conclude, one can say that SVM performs better as compared to neural networks operating

upon with lesser neurons. Increase in number of neurons can contribute to a significant increase

in the performance of the neural network, but this comes at the expense of increased operating

time. Also, we find that SVMs do not depend on the dimensionality of the data under

consideration, as compared to ANNs. Further, in SVM, the polynomial kernel function performs

better than the radial basis function, because the former has greater degrees of freedom and has a

greater chance of developing complex curves as compared to the radial basis function.

The following segment shows the MATLAB routine for this experiment.

MATLAB CODE:

%Script for running SVM

clear all
close all
clc

X2=mvnrnd([2 2 2],[1 0 0; 0 2 0; 0 0 5],1000);
X1=mvnrnd([1 1 1],[1 0 0; 0 2 0; 0 0 5],1000);

trn1=350;
trn2=350;
Xtrain=[X1(1:trn1,:);X2(1:trn2,:)];
class=[ones(trn1,1);1+ones(trn2,1)];

s=svmtrain(Xtrain,class,'Method','SMO','Kernel_function','rbf','showplot',1);

Xtest=[X1(trn1+1:1000,:);X2(1+trn2:1000,:)];
p=svmclassify(s,Xtest)

q=[ones(1000-trn1,1);1+ones(1000-trn2,1)];
miscl=sum(abs(p-q));
accuracy=100-100*miscl/(1000-trn1+1000-trn2)

%Neural network script file for spiral data

clear all
close all
clc

%Creating a variable running from 0-4pi
t=linspace(1,4*pi,1000)';
r1=sqrt(t);
r2=-sqrt(t);

%Variables to create spiral path
for i=1:length(t)
 x1(i)=r1(i)*cos(t(i));
 y1(i)=r1(i)*sin(t(i));
 x2(i)=r2(i)*cos(t(i));
 y2(i)=r2(i)*sin(t(i));
end

X1=[x1' y1']';
X2=[x2' y2']';

%Preparing a sampled set of train-data from original data

j=1;
k=1;
for i=1:length(X1)
 if(mod(i,10)==0)
 X1_new(:,j)=X1(:,i);
 X2_new(:,j)=X2(:,i);
 j=j+1;
 else
 X11_new(:,k)=X1(:,i);
 X21_new(:,k)=X2(:,i);
 k=k+1;
 end
end
plot(X1_new(1,:),X1_new(2,:),'x')
hold on
plot(X2_new(1,:),X2_new(2,:),'ro')

%Prepare a set of testing data and target data
ntrain = length(X1_new);
dim = 2;
traindata = [X1_new X2_new];
testdata = [X11_new X21_new];
ntest = length(X1)-ntrain;
targtrain = [ones(1,ntrain) 1+ones(1,ntrain)];
targtest = [ones(1,ntest) 1+ones(1,ntest)];

%Compute number of misclassified points
sample_outputs=round(network1_outputs);
count=0;
for i=1:ntest
 if(sample_outputs(i)==2)
 count=count+1;
 end
end
for i=ntest:length(targtest)
 if(sample_outputs(i)==1)
 count=count+1;
 end
end

%Accuracy
accuracy = 100*(length(testdata)-count)/length(testdata)

Question III

Aim:

To design classifiers using Parzen window, K-nearest neighbor and nearest neighbor techniques

using the same data as that used in the previous task, and compare the performances of the three

approaches.

Introduction:

The Parzen window technique is one of the very robust techniques available for pattern

classification. It is one of those techniques that compute the probability density function of the

data for data classification. In this technique, we define a window function φ, which has a value

only within a particular range, and is zero elsewhere. Using this, we calculate the estimate the

densities using the following equation as

1

1 1
()

n
i

n

i n n

x x
p x

n v h
 (2)

Here
nh controls the size of the window, and has an important bearing on the performance if a

rectangular window is used.

The k-nearest neighbor (KNN) technique is a very simple yet effective technique for pattern

classification. Objects are classified based on a majority vote of its neighbors, such that the

object is assigned to that particular class which is most commonly present amongst its neighbors.

K is a positive integer, and is usually kept small. In the event of k=1, this algorithms gets

transformed into the nearest neighbor algorithm, which is a special case. Usually, it is advisable

to keep K as an odd number, so that conflicts will not arise due to an equal number of votes for

either class.

Procedure:

While performing experiments with Parzen windows, both rectangular and Gaussian windows

were taken into consideration. It is instructive here, to explore the case where no points fall

inside the window for a given
nh , or if there are an equal number of points from either class

within the window. In such cases, conflicts are usually resolved using priori probabilities of each

class. However, since we assume here that both classes under consideration have equal priori

probabilities, we resolve conflicts using a flip of a coin. This is practically done using a random

number generator, that generates randomly one of two values (1,2). We decide on the class of the

object based on the outcome of this RV generator.

Results and Discussion:

Let us now discuss the results so obtained for the experiments conducted. The remainder of this

section is organized as follows. We first develop the results for Parzen windows technique,

followed by the k-nearest neighbor technique. The nearest neighbor technique is discussed as a

special case.

Case 1

First consider using the Parzen Window Technique for 2-D well separated data. Experiments for

different values of “window” size were conducted for both Gaussian and Rectangular windows.

Following are the results:

 Class I Class II

Mean [1 1] [4 3]

Variance
0.8 0.07

0.07 0.5

1 0.5

0.5 1

 %training

H

10 35 65 90

G R G R G R G R

0.15 95.83 94.05 95.77 95.0 96.14 95.14 95.0 94.5

0.30 95.89 90.06 96.07 94.38 96.29 94.00 95.0 93.5

0.50 95.94 78.17 96.0 88.39 95.71 91.42 95.5 93.0

0.75 95.78 62.28 95.85 76.31 95.14 82.29 94.0 84.0

The following are the plots generated for the h=0.75. We have plotted the classification of data

for varying proportions of training data, for both rectangular and Gaussian windows.

Fig20: Training data and misclassified points for different proportions of training data using Parzen windows

Case 2

We now consider the case of 2-D data that overlap.

We find that the accuracy rates are not very high for all the window sizes, with the highest

being just over 80% for Gaussian window. This is owing to the overlapping of the data sets.

Also we observe that some of the extremal points have been misclassified. This is because,

even in such cases, they may have been those points which would not have had neighbors for

that particular window size.

Further, there are also points in the border that were not misclassified, even though they are

farther away from their classes. The reason for this is these points are training points, and

NOT test points, and hence don’t appear to be misclassified.

Following is the results for accuracy for rectangular and Gaussian windows of varying sizes

for a value of h=1.25.

 Class I Class II

Mean [1 1] [2 2]

Variance
0.8 0.07

0.07 0.5

0.7 0.21

0.21 0.56

 %training

 H

10 35 65 90

G R G R G R G R

2 78.56 78.83 79.0 79.07 79.29 78.42 75.0 74.0

1.25 80.17 78.94 78.85 78.31 78.29 78.14 81.5 80.0

0.75 79.72 77.95 78.54 77.54 77.86 77.29 81.0 81.0

0.50 79.76 74.44 78.62 76.77 78.0 76.58 81.0 79.0

Fig21: Training data and misclassified points for different proportions of training data using Parzen windows

Case 3

Let us consider now 3-D data sets that are overlapping. The motivation behind going in for

overlapping data sets is the observation that all the pattern classifiers perform exceptionally well

under non-overlapping data, and this gives us very little scope for comparison of performance.

%Training

H

10 35 65 90

R G R G R G R G

0.5 58.61 91.72 74 92.6 80.71 93.42 82 92.5

1 82 91.33 89.76 92.30 91.14 92.42 92.5 91

1.5 88.94 90.11 92.93 91.46 93.42 92 92.5 89.5

2 91.5 89.33 92.92 90.38 93.57 89.85 92.5 88.5

Lets us also consider a few other cases, for academic interests, to see the performance of Parzen

windows for other 3-d data sets.

 Class I Class II

Mean [3 3 3] [1 1 1]

Variance

1 0 0

0 2 0

0 0 5

1 0 0

0 2 0

0 0 5

 Class I Class II

Mean [3 3 3] [1 1 1]

Variance

1.5 0 0

0 2.5 0

0 0 5.5

1 0 0

0 2 0

0 0 5

%Training

H

10 35 65 90

R G R G R G R G

0.15 50 82.83 50.4 84.53 50.57 85.14 50 87.00

0.5 53.6 86.61 60.15 88.38 63 88.4 63.5 90

1 67.38 88.11 80.23 88.07 83 88.14 86 88

1.5 78.33 87.77 85.15 87.53 85.71 87.57 88 87.5

2 83.72 87.44 87.23 87.07 87.28 87.14 88 86.5

We observe a decrease in the accuracy percentages with an increase in the amount of

overlapping, caused by an increase in the variance of data. This is perfectly in order with the

performance of the classifiers seen in the previous sections.

We shall plot the data sets and misclassified points, for a value of h=0.5. We here note that a

large number of correct samples are misclassified as there are no neighbors in the window

leading to the flip of a coin method as we have assumed equal priors.

 Fig21: Training data and misclassified points Fig22: Error plot for Parzen window, h=0.50

Now consider other 3-D data sets with more overlapping by shifting the mean

 %Training

H

10 35 65 90

R G R G R G R G

0.25 50.56 60.67 50.92 67.58 50.28 68.12 53 73

0.5 50.88 67.55 53.76 72.23 55.71 72.14 56.5 73

1 57.94 71.67 63.23 73.53 66.85 73.71 70 74.5

2 69.27 71.72 72.46 75.38 76.71 73.85 78.5 74.5

As expected, and as is seen from the previous cases, the same argument hold for this case too, in

that the accuracy shows a sharp decrease due to the presence of large overlapping in the data

sets.

We shall now plot the data sets and the misclassified points for a value of h=1, by varying the

training data‟s proportion, and the error plot.

Fig23: Error plot for Parzen window, h=0.50

 Class I Class II

Mean [2 2 2] [1 1 1]

Variance

1 0 0

0 2 0

0 0 5

1 0 0

0 2 0

0 0 5

Fig24: Training data and misclassified points

We shall now look at the experimental results for the k-nearest neighbor technique. We have

operated on exactly the same data as that used in Parzen Window technique

Case 4

As usual, we first consider 2-D well separated data, and the results are tabulated for the nearest

neighbor (K=1) and other values of K.

Experiments were also conducted by changing the distance metric from „Euclidian‟ to „city

block‟ distance. However, we do not observe any significant improvement in doing so.

 Class I Class II

Mean [1 1] [4 3]

Variance
0.8 0.07

0.07 0.5

1 0.5

0.5 1

%training

K

10 35 65 90

1 91.00 91.07 88.57 87.0

3 90.89 90.00 88.28 89.0

5 91.11 91.07 88.57 89.0

7 91.22 91.38 89.71 88.0

%training

K

10 35 65 90

1 88.67 86.61 85.43 88.0

3 89.22 88.15 86.28 90.0

5 89.88 90.15 88.0 87.0

7 90.56 89.86 89.14 86.0

The following are the plots of KNN with Euclidian distance metric K=1

Fig25: Training data and misclassified points

Case 5

Consider next 2-D data sets that are overlapping, as was experimented with in the previous case.

The data is given as:

 Class I Class II

Mean [1 1] [2 2]

Variance
0.8 0.07

0.07 0.5

0.7 0.21

0.21 0.56

As expected there is a decline in the accuracy rates, owing to an increase in the overlapping of

data. We shall now plot the data sets and the misclassified points for a value of k=7. Figure 26

represents the plots for the above mentioned cases.

Fig26: Training data and misclassified points

 %training

K

10 35 65 90

1 43.89 38.15 42.57 47.0

3 53.11 45.23 50.28 60.0

5 54.33 50.46 52.57 59.0

7 59.67 56.0 56.28 61.0

Case 6

Consider next 3-D data sets that overlap to an extent. The data and the accuracy tables are given

below. We find that the performance of this technique is pretty good, with accuracy percentages

ranging from 82-87%. Plots are given for 2 cases of training data variation.

Fig27: Training data and misclassified points

 Class I Class II

Mean [3 3 3] [1 1 1]

Variance

1 0 0

0 2 0

0 0 5

1 0 0

0 2 0

0 0 5

%Training

K

10 35 65 90

1 81 81.53 82.85 87

3 84.67 85.23 86 86

5 85.11 86.15 86 86

7 85.33 85.69 86.28 87

9 85.44 85.69 86.85 86

11 84.89 86.16 87.14 85

13 85 86.46 87.42 86

Case 7

We shall see here the plots for 3-D data set II and set III. The results for set III are very poor, as

we will see. We shall also have a corresponding look at the results of Parzen window, so that we

can get to know the better of the two techniques.

 Class I Class II

Mean [3 3 3] [1 1 1]

Variance

1.5 0 0

0 2.5 0

0 0 5.5

1 0 0

0 2 0

0 0 5

%Training

K

10 35 65 90

1 65.67 68.61 67.42 72

3 73.67 73.38 75.71 76

5 74.55 76 75.42 81

7 73.89 75.38 76.86 80

9 74.33 77.23 77.14 80

11 74.55 77.69 75.71 82

13 75.44 77.69 76.28 85

 Class I Class II

Mean [2 2 2] [1 1 1]

Variance

1 0 0

0 2 0

0 0 5

1 0 0

0 2 0

0 0 5

%T raining

K
10 35 65 90

1 29.44 31.23 30.28 33

3 39.77 37.23 38.85 38

5 40.77 39.23 35.71 39

7 42.77 38.15 43.42 47

9 43.11 42.76 41.42 47

The results, as can be seen are very poor, as there is a heavy amount of overlapping in the data.

Let us have a look at Figures 23 and 24, and look at the corresponding table, which reveals that

the Parzen window performs much better for the same data set. This is because for extremely

overlapping datasets, there is a very high chance that the nearest neighbor could be a data point

from the wrong class, and so the k-nearest neighbors technique succumbs to this grey point.

Hence, these are the conclusions that may be drawn from this experiment .

 Parzen window using Gaussian kernel is better than the one with rectangular kernel,

which exhibits a heavy dependency on the size of the window h.

 K-NN performs better than nearest neighbor technique, and is more robust.

 K-NN is better than Parzen window operating with rectangular kernel as it doesn‟t

misclassify extremal points. This is because, the extremal points, owing to their closeness

to the correct class, can never get misclassified.

 Also, from our observation, we find that the Parzen window perform better than k-NN.

This may be quite contrary to the existing theories, as the data that we have experimented

with is one with lots of overlapping. This is because, the motivation was to experiment

and study the performances of the classifiers for these types of data, as we were able to

discern little about the performance of these classifiers on perfectly separable data.

The following segment shows the MATLAB routine for this experiment.

MATLAB CODE:

%Parzen window technique

function [e1 e2]=simulate_parzen(X1,X2,h)

%variables to hold size of input data
[m n]=size(X1);
[F d]=size(X2);
z=1;

%Gives different training percentages
H=[100 350 650 900];

%2-D case
if(d==2)
 for I=1:4
 plot(X1(:,1),X1(:,2),'.');hold on;plot(X2(:,1),X2(:,2),'o');

e1(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m,:);X2(H(I)+1:m,:)],[ones(

m-H(I),1);2*ones(m-H(I),1)],h,1);
 figure
 plot(X1(:,1),X1(:,2),'.');hold on;plot(X2(:,1),X2(:,2),'o');

e2(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m,:);X2(H(I)+1:m,:)],[ones(

m-H(I),1);2*ones(m-H(I),1)],h,2);
 z=z+1;
 end
end

%3-D case
if(d==3)
 for I=1:4
 plot3(X1(:,1),X1(:,2),X1(:,3),'.');hold

on;plot3(X2(:,1),X2(:,2),X2(:,3),'o');

e1(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m,:);X2(H(I)+1:m,:)],[ones(

m-H(I),1);2*ones(m-H(I),1)],h,1);

 figure
 plot3(X1(:,1),X1(:,2),X1(:,3),'.');hold

on;plot3(X2(:,1),X2(:,2),X2(:,3),'o');

e2(z)=parzen(X1(1:H(I),:),X2(1:H(I),:),[X1(H(I)+1:m,:);X2(H(I)+1:m,:)],[ones(

m-H(I),1);2*ones(m-H(I),1)],h,2);
 z=z+1;
 end
end

plot(H,e1(1:z-1));hold on;plot(H,e2(1:z-1),'r')

%Compute accuracy
accuracy_rectangular=100-e1
accuracy_gaussian=100-e2

%function that performs Parzen window technique

function[error]=parzen(X1,X2,Xtest,group,h,ch)

%variables to hold size of input data
[m d]=size(X1);
[p d]=size(X2);
[Q R]=size(Xtest);

%counts the number of misclassified points
misc=0;

%Rectangular Window
if(ch==1)
 for k=1:Q
 px0w1=0;
 px0w2=0;
 for i=1:m
 count=0;
 for j=1:d
 %applying condition
 if(abs((X1(i,j)-Xtest(k,j))/h) <0.5)
 count=count+1;
 end
 end
 if(count==d)
 px0w1=px0w1+1;
 end
 end
 for i=1:p
 count=0;
 for j=1:d
 %applying condition
 if(abs((X2(i,j)-Xtest(k,j))/h) <0.5)
 count=count+1;
 end
 end
 if(count==d)
 px0w2=px0w2+1;
 end
 end

 %Making a decision; use a toss of a coin to resolve conflicts/ties
 if(px0w1>px0w2)
 class=1;
 elseif(px0w1<px0w2)
 class=2;
 else
 chance=randperm(2);
 if(chance(1) == 1)
 class =1;
 else
 class =2;
 end
 end

 %print misclassified points in red
 if(class~=0 && group(k)~=class)

 if(d==2), plot(Xtest(k,1),Xtest(k,2),'rX');hold on
 end
 if(d==3), plot3(Xtest(k,1),Xtest(k,2),Xtest(k,3),'rX');hold on
 end
 misc=misc+1;
 end

 end
end

%Gaussian Window
if(ch==2)
 for k=1:Q
 px0w1=0;
 px0w2=0;
 for i=1:m
 px0w1=px0w1+exp(-(0.5)*((X1(i,:)-Xtest(k,:))*(X1(i,:)-

Xtest(k,:))')/(h^2));
 end
 for i=1:p
 px0w2=px0w2+exp(-(0.5)*((X2(i,:)-Xtest(k,:))*(X2(i,:)-

Xtest(k,:))')/(h^2));
 end

 %Making a decision; use a toss of a coin to resolve conflicts/ties
 if(px0w1>px0w2)
 class=1;
 else
 class=2;
 end

 %print misclassified points in red
 if(group(k)~=class)
 if(d==2), plot(Xtest(k,1),Xtest(k,2),'rX');hold on
 end
 if(d==3)
 plot3(Xtest(k,1),Xtest(k,2),Xtest(k,3),'rX');hold on;
 end
 misc=misc+1;
 end
 end
end

error=(misc/Q)*100;
hold off

%function that performs knn technique

function simulate_knn(X1,X2,k)

%variables to hold size of input data
[m n]=size(X1);
[F d]=size(X2);
z=1;

%Gives different training percentages
H=[100 350 650 900];

if(d==2)
 for I=1:4
 plot(X1(:,1),X1(:,2),'.');hold on;plot(X2(:,1),X2(:,2),'o');
 Xtrain=[X1(1:H(I),:);X2(1:H(I),:)];
 Xtest=[X1(H(I)+1:m,:);X2(H(I)+1:m,:)];
 group=[ones(H(I),1);2*ones(H(I),1)];
 expec=[ones(m-H(I),1);1+ones(m-H(I),1)];
 cl=knnclassify(Xtest,Xtrain,group,k);
 for t=1:length(cl)
 if(cl(t)-expec(t)~=0)
 plot(Xtest(t,1),Xtest(t,2),'rX');
 end
 end
 e(z)=(sum(abs(cl-expec))/(m-H(I)))*100;
 z=z+1;
 figure
 end
end
if(d==3)
 for I=1:4
 plot3(X1(:,1),X1(:,2),X1(:,3),'.');hold

on;plot(X2(:,1),X2(:,2),X2(:,3),'o');
 Xtrain=[X1(1:H(I),:);X2(1:H(I),:)];
 Xtest=[X1(H(I)+1:m,:);X2(H(I)+1:m,:)];
 group=[ones(H(I),1);2*ones(H(I),1)];
 expec=[ones(m-H(I),1);1+ones(m-H(I),1)];
 cl=knnclassify(Xtest,Xtrain,group,k,'cityblock');
 for t=1:length(cl)
 if(cl(t)-expec(t)~=0)
 plot3(Xtest(t,1),Xtest(t,2),Xtest(t,3),'rX');
 end
 end
 e(z)=(sum(abs(cl-expec))/(m-H(I)))*100;
 z=z+1;
 figure
 end
end

figure
plot(e(1:z-1))

%Accuracy
accuracy=100-e

References

[1] “Pattern Classification”, Richard.O.Duda, Peter.E.Hart, David.G.Stork

[2] “MLP and SVM Networks – a Comparative Study”, Stanislaw Osowski, Krzysztof Siwek

and Tomasaz Mariewicz, NORSIG 2004

