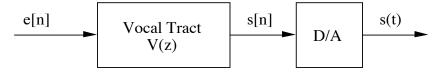

EE 438Assignment No. 7Fall 2009

1. Consider the spectrogram shown below for the utterance "Every salt breeze comes from the sea."



- a. Is this a wideband or narrowband spectrogram?
- b. If your answer to part a, was "wideband", sketch what a narrowband spectrogram for this same signal would look like. On the other hand, if your answer to part a, was "narrowband", sketch what a wideband spectrogram for this same signal would look like.
- c. Assuming the entire utterance lasted 2 sec,*very* roughly estimate the pitch period.
- d. Identify the formant frequencies at the time marked by the arrow.
- e. What phoneme do you think is being uttered at this point? Support your answer by comparison with the formant frequencies in the table below:

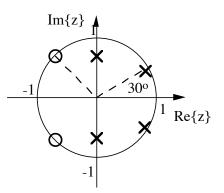

ARPABET Symbol for Vowel	IPA Symbol	Typical Word	Fi	F2	Fر
ſY	N	beet	270	2290	3010
IH	<u>N</u>	bit	390	1990	2550
EH	hc∕	bet	530	1840	2480
AE	/æ/	bat	660	1720	2410
AH	IN	but	520	1190	2390
**	/=/	hot	730	1090	2440
AO	/5/	bought	570	840	2410
UH	/U/	foot	440	1020	2240
UW	/u/	boot	300	870	2240
ER	124	bird	490	1350	1690

TABLE 2.2. Formant frequencies for typical vowels.

2. The digital synthesizer for voiced speech shown below operates at a 10 kHz sampling rate.

The excitation is given by $e[n] = \sum_{k=-\infty}^{\infty} \delta[n-50k]$. The vocal tract transfer function V(z) has poles and zeros at the locations shown below:

- a. What is the pitch period in seconds?
- b. Find the formant frequencies in Hz, and rank them according to their strength, *i.e.* how peaked the vocal tract response is at the corresponding frequency.
- c. Sketch what a *wideband* spectrogram would look like for this utterance. Be sure to label the pitch and formant information appropriately.
- d. Sketch what a *narrowband* spectrogram would look like for this utterance. Be sure to label the pitch and formant information appropriately.
- 3. Consider the STDTFT defined as

$$X(\omega, n) = \sum_{k} x[k]w[n-k]e^{-jwk}$$

where x[n] is the speech signal and w[n] is the window sequence. Prove the following properties

- a. Linearity -if v[n] = ax[n] + by[n], then $V(\omega, n) = aX(\omega, n) + bY(\omega, n)$.
- b. Shifting if $v[n] = x[n n_0]$, then $V(\omega, n) = X(\omega, n n_0)e^{-j\omega n_0}$.
- c. Modulation if $v[n] = x[n]e^{j\omega_0 n}$, then $V(\omega, n) = X(\omega \omega_0, n)$.
- d. Show that $X(\omega, n)$ can be put in the form

$$X(\omega,n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} W(\theta) e^{j\theta n} X(\omega+\theta) d\theta$$

i.e. $X(\omega,n)$ is a smoothed spectral estimate of $X(\omega)$ at frequency ω .

4. Consider the signal

$$x[n] = \begin{cases} \cos(\pi n / 8), & n < 0\\ \cos(\pi n / 3), & n \ge 0 \end{cases}$$

and assume a rectangular window

$$w[n] = \begin{cases} 1, & |n| < 25\\ 0, & \text{else} \end{cases}$$

- a. Compute the STDTFT as defined in the previous problem for the following cases:
 - i. n < -25
 - ii. n > 25
 - iii. n = 0
- b. Sketch $|X(\omega,n)|$ for all n. Be sure to label important dimensions.