Midterm Examination 1 ECE 301

Division 3, Fall 2007 Instructor: Mimi Boutin

Instructions:

- 1. Wait for the "BEGIN" signal before opening this booklet. In the meantime, read the instructions below and fill out the requested info.
- 2. You have 50 minutes to complete the 5 questions contained in this exam. When the end of the exam is announced, you must stop writing immediately. Anyone caught writing after the exam is over will get a grade of zero.
- 3. This booklet contains 9 pages. The last three pages contain a table of formulas and properties. You may tear out these three pages **once the exam begins**.
- 4. This is a closed book exam. The use of calculators is prohibited. Cell phones, pagers, and all other electronic communication device are strictly forbidden. Ipods and PDAs are not allowed either.

Email:	
Signature:	
Itemized Scores]
Problem 1:	
Problem 2:	
Problem 3:	
Problem 4:	
Problem 5:	
Total:	

Name:

(22 pts) 1. Let x(t) and y(t) be the input and the output of a continuoustime system, respectively. Answer each of the questions below with either yes or no (no justification needed).

If $y(t) = x(2t)$, is the system causal?	
If $y(t) = (t+2)x(t)$, is the system causal?	
If $y(t) = x(-t^2)$, is the system causal?	
If $y(t) = x(t) + t - 1$, is the system memoryless?	
If $y(t) = x(t^2)$, is the system memoryless?	
If $y(t) = x(t/3)$, is the system stable?	
If $y(t) = tx(t/3)$, is the system stable?	
If $y(t) = \int_{-\infty}^{t} x(\tau)d\tau$, is the system stable?	
If $y(t) = \sin(x(t))$, is the system time invariant?	
If $y(t) = u(t) * x(t)$, is the system LTI?	
If $y(t) = (tu(t)) * x(t)$, is the system linear?	

(15 pts) **2.** An LTI system has unit impulse response h(t) = u(t+2). Compute the system's response to the input $x(t) = e^{-t}u(t)$. (Simplify your answer until all \sum signs disappear.)

(15 pts) 3. Compute the energy and the power of the signal $x(t) = \frac{3e^{jt}}{1+j}$.

(15 pts) 4. Compute the coefficients a_k of the Fourier series of the signal x(t) periodic with period T=4 defined by

$$x(t) = \begin{cases} \sin(\pi t), & 0 \le t \le 2 \\ 0, & 2 < t \le 4 \end{cases}.$$

(Simplify your answer as much as possible.)

5. A discrete-time system is such that when the input is one of the signals in the left column, then the output is the corresponding signal in the right column:

(10 pts) a) Can this system be time-invariant? Explain.

(10 pts) **b)** Assuming that this system is linear, what input x[n] would yield the output y[n] = u[n-1]?

Facts and Formulas

1 CT Signal Energy and Power

$$E_{\infty} = \int_{-\infty}^{\infty} |x(t)|^2 dt \tag{1}$$

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \tag{2}$$

2 Fourier Series of CT Periodic Signals with period T

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\left(\frac{2\pi}{T}\right)t}$$
 (3)

$$a_k = \frac{1}{T} \int_0^T x(t)e^{-jk\left(\frac{2\pi}{T}\right)t}dt \tag{4}$$

3 Properties of CT Fourier Series

Let x(t) be a periodic signal with fundamental period T and fundamental frequency ω_0 . Let y(t) be another periodic signal with the same fundamental period T and fundamental frequency ω_0 . Denote by a_k and b_k the Fourier series cofficients of x(t) and y(t) respectively.

Parseval's Relation:
$$\frac{1}{T} \int_{-\infty}^{\infty} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$
 (10)

4 DT Signal Energy and Power

$$E_{\infty} = \sum_{n=-\infty}^{\infty} |x[n]|^2 \tag{11}$$

$$P_{\infty} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$
 (12)

5 Fourier Series of DT Periodic Signals with period N

$$x[n] = \sum_{k=0}^{N-1} a_k e^{jk(\frac{2\pi}{N})n}$$
 (13)

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk(\frac{2\pi}{N})n}$$
 (14)

6 Properties of DT Fourier Series

Let x[n] be a periodic signal with fundamental period N and fundamental frequency ω_0 . Let y[n] be another periodic signal with the same fundamental period N and fundamental frequency ω_0 . Denote by a_k and b_k the Fourier series cofficients of x(t) and y(t) respectively.

Linearity:
$$\alpha x[n] + \beta y[n]$$
 $\alpha a_k + \beta b_k$ (15)

Time Shifting: $x[n-n_0]$ $e^{-jk\omega_0 n_0}a_k$ (16)

Conjugation: $x^*[n]$ a_{-k}^* (17)

 $x[n]$ real and even a_k real and even (18)

 $x[n]$ real and odd a_k pure imaginary and odd (19)

Parseval's Relation:
$$\frac{1}{N} \sum_{n=0}^{N-1} |x(t)|^2 dt = \sum_{k=0}^{N-1} |a_k|^2$$
 (20)

7 Properties of LTI systems

- LTI systems commute.
- The response of an LTI system with unit impulse response h to a signal x is the same as the response of an LTI system with unit impulse response x to the signal h.
- An LTI system consisting of a cascade of k LTI systems with unit impulse responses h_1, h_2, \ldots, h_k respectively, is the same as an LTI system with unit impulse response $h_1 * h_2 * \ldots * h_k$.
- The response of a CT LTI system with unit impulse response h(t) to the signal e^{st} is $H(s)e^{st}$ where $H(s)=\int_{-\infty}^{\infty}h(\tau)e^{-s\tau}d\tau$.
- The response of a DT LTI system with unit impulse response h[n] to the signal z^n is $H(z)z^n$ where $H(z)=\sum_{k=-\infty}^{\infty}h[k]z^{-k}$.