The golden ratio is a ratio such that, given two quantities a and b,

$$
\frac{a+b}{a}=\frac{a}{b}
$$

We can solve this equation to find an explicit quantity for the ratio.

$$
\begin{aligned}
& L H S=\frac{a}{a}+\frac{b}{a}=1+\frac{b}{a} \\
& 1+\frac{b}{a}=\frac{a}{b}
\end{aligned}
$$

We set the ratio equal to a certain quantity given by r.

$$
r \equiv \frac{a}{b}
$$

Then we can solve for the ratio numerically.

$$
\begin{aligned}
& 1+\frac{1}{r}=r \\
& r+1=r^{2}
\end{aligned}
$$

We can see from the above result that the golden ratio can also be described as a ratio such that in order to get the square of the ratio, you add one to the ratio.

$$
r^{2}-r-1=0
$$

We can then apply the quadratic formula to solve for the roots of the equation.

$$
r=\frac{1 \pm \sqrt{1^{2}-4(1)(-1)}}{2}=\frac{1 \pm \sqrt{5}}{2}
$$

The positive root is then the golden ratio.

$$
\frac{1+\sqrt{5}}{2}=1.618 \ldots \equiv \phi
$$

The golden ratio, ϕ, is sometimes also called the golden mean or the golden section. The golden ratio can be frequently observed in man-made objects, though they are generally "imperfectly golden" - that is, the ratio is approximately the golden ratio, but not exactly. Some everyday examples include: credit cards, $w / h=1.604$, and laptop screens, $w / h=1.602$ (Tannenbaum 392).

Visualizations of the golden ratio can be seen below (Weisstein):

MathlsFun also has an interactive display that can construct a rectangle in the golden ratio given a certain fixed width or length.

