
ECE 662 Spring 2008
Homework 2

xxxxxxxxxxxx
Purdue University

xxxxxx@purdue.edu

xxxxxxxxxxxx
Purdue University

xxxxxxx@purdue.edu

April 17, 2008

1 Problem 2 and 3: Methodology

For both problem 2 and problem 3, we use a common dataset and a common toolkit
to run our experiments.In this section, we briefly describe the toolkit and the dataset
used by us for the experiments. We then describe our attribute selection procedure
in detail.

1.1 Toolkit

We use Weka 3 - a data mining software written in Java [7]. “Weka is a collec-
tion of machine learning algorithms for data mining tasks. The algorithms can
either be applied directly to a dataset or called from your own Java code. Weka
contains tools for data pre-processing, classification, regression, clustering, asso-
ciation rules, and visualization. It is also well-suited for developing new machine
learning schemes” [4]. Weka‘s main graphical user interface, the Explorer, gives
access to all its facilities using menu selection and form filling. It is illustrated in
Figure 1. We use the Explorer interface for this homework to experiment with the
various machine learning algorithms.

1.2 Dataset

We use a dataset available at UCI Machine Learning dataset repository [5]. The
dataset is called “Pen-Based Recognition of Handwritten Digits” [2]. It is a digit
database created by collecting 250 samples from 44 writers. The dataset attributes
are the digits represented as constant length feature vectors. The samples written
by 30 writers are used for training, cross-validation and writer dependent testing,

1

and the digits written by the other 14 are used for writer independent testing. The
original dataset contains 10 classes. We use only 3 of these classes (the first 3) for
the purpose of better visualization. Following are the salient characteristics of this
dataset:

1. Number of Instances
Training 2339
Testing 1091

2. Number of Attributes
16 input + 1 class attribute

3. For Each Attribute:
All input attributes are integers in the range 0..100.
The last attribute is the class code 0,1,2.

4. Class Distribution
Class: No of examples in training set
0: 780
1: 779
2: 780
Class: No of examples in testing set
0: 363
1: 364
2: 364

1.3 Attribute Selection

We have 16 attributes in our dataset. We perform our experiments using all the
attributes in the dataser. For the purpose of better visualization, we present a plot
matrix of all pairs of attributes(see Figure 2). The classes are represented with
different colors. If we are asked to select the best 2 attributes to classify our dataset
based on the plot matrix, which attributes would we choose? As we can see from
the plot matrix, attributes A15 and A16 seem to give a “good” linear separation
between the classes. On the other hand, the plot matrix for attribute A10 and A13
seem to suggest that a “good” separation between the classes will not be possible
if we use only A10 and A13 for the classification. We confirm our intuition by
performing experiments on these two pairs of attributes.

2

2 Problem 2 and 3: Experiments

2.1 Support Vector Classification

Weka implements John Platt’s sequential minimal optimization algorithm for train-
ing a support vector classifier [6]. This implementation globally replaces all miss-
ing values and transforms nominal attributes into binary ones. It also normalizes
all attributes by default. Table 1 gives the classification accuracy (CA) for various
kernels using all 16 attributes in the dataset. The complexity parameter C that con-
trol the error term in the SVM optimization problem (see equation 1 below) is set
to 1 for all the kernels.

min
1
2
||w||2 + C

∑
i

εi (1)

such that
ci(w.xi − b) ≥ 1− εi, 1 ≤ i ≤ n.

Kernel Kernel Function CA(%)
Linear K(x, y) =< x, y > 96.4

Quadratic K(x, y) = (< x, y >)2 97.6

Radial Basis Function (RBF)(γ = 1) K(x, y) = exp−(γ∗<x−y,x−y>2) 98.6

Table 1: SVM results for different kernels using all 16 attributes

We see that the RBF kernel performs the best on our dataset with 98.6% accu-
racy although the linear and quadratic kernels are not bad either with 96.4% and
97.6% accuracy respectively. This is probably because of the fact that the num-
ber of attributes (dimensions) is already large enough (= 16) such that mapping
the data to higher dimensions using the quadratic or the RBF kernel does yield
significantly better results. We confirm this intuition by performing experiments
on a lower dimensional dataset. Table 2 presents the results for the attribute pairs
(A15, A16) and (A10, A13) identified in Section 1.3.

Kernel A10, A13 CA% A15, A16 CA%)
Linear 60.9 83

RBF(C = 1, γ = 1) 69.1 83.2

Table 2: SVM CA for different kernels using attributes A15, A16 and A10, A13

The results in Table 2 present some interesting observations. The scatter
plot 2 for the attribute pair A15, A16 shows good linear separation between the
classes. This is confirmed as the performance of SVM with linear kernel is almost
as good as that of the RBF kernel for A15, A16. Moreover, we observe that the

3

classification accuracy for A10, A13 using the RBF kernel is much higher at
69.1% than the linear kernel. This highlights the usefulness of the SVM classifier
for obtaining non-linear separation between classes.

There are two parameters while using RBF kernels: C and γ. It is not known
beforehand which C and γ are the best for a given problem; consequently some
kind of model selection (parameter search) must be done [3]. Unfortunately, Weka
(unlike libsvm [1]) does not provide any built-in methods for doing an automatic
search for these parameters. We present some results on tuning the C parameter
while keeping γ fixed at = 1. Figure 3 shows the CA for increasing values of C for
all 16 attributes. Note that the parameter C controls the weight of the error term
in 1. We observe that increasing value of C till C = 20 increases the classification
accuracy till 99.2, and remains constant after that.

2.2 Neural Network Classification

A neural network in Weka uses backpropagation to classify instances. The nodes
in this network are all sigmoid (except for when the class is numeric in which
case the the output nodes become un-thresholded linear units). The results for
different network configurations are presented in Figure 4. We note that the
best classification accuracy of 97.6% is obtained with the most simple network
configuration of 1 hidden layer with 2 nodes per hidden layer.

Table 3 gives the classification accuracy for 4 different configuration of the neu-
ral network for the attribute pairs (A15, A16) and (A10, A13). Network configura-
tion of 1 hidden layer and 3 nodes for the hidden layer gives the best classification
accuracy for (A10, A13) attribute pair, while the CA for (A15, A16) attribute pair
is approx. same for all configurations.

Network Configuration A10, A13 CA(%) A15, A16 CA(%))
1 hidden layer, 2 nodes 66.6 82.8
1 hidden layer, 3 nodes 71.6 82.4

2 hidden layers, 2 nodes/layer 65.9 82
2 hidden layers, 3 nodes/layer 70.66 83.3

Table 3: SVM CA for different kernels using attributes A15, A16 and A10, A13

2.3 K-nearest neighbors Classification

Figure 5 present the results for k-nearest neighbor classification with different
values of k for both euclidean and lmax distance measures. Weka does not have

4

built-in support for the lmax measure, so we implement that and integrate it
with Weka’s GUI (as shown in Figure 6). There are two observations from this
experiment. First, the euclidean distance measure perform slightly better than the
lmax distance measure for higher values of k. For lower values of k (k ≤ 2), lmax

gives slightly better results. Second, the best classification accuracy is obtained
for k = 2 at 98.4 for the lmax measure and the CA decreases consistently after
that as k increases. Weka has a built-in mechanism for determining the best value
of k using a cross-validation procedure on the training dataset. The best values
of k found out by Weka’s cross-validation procedure is k = 3 which results in an
98.2% classification accuracy.

Next, we use Weka’s cross validation procedure to find out the best k for dataset
containing the attribute pair (A10, A13) and (A15, A16). Best k for (A10, A13) is
found to be k = 9 resulting in an 72.13% classification accuracy. For the attribute
pair (A15,A16), the best k comes out to be k = 20 with a classification accuracy
of 82.5%.

2.4 Parzen window classification

Weka does not contain an implementation of the Parzen window classifier. So we
implement that and integrate it with Weka’s GUI (as shown in Figure 7). The im-
plementation uses a hypercube kernel for the volume parameterized by the side
length h. The experimental results for different values of h for this shown in Fig-
ure 8. The maximum classification accuracy of 94.2% is achieved at h = 40. This
potentially makes parzen window the worst performing classifier among all clas-
sifiers tested in this homework. Note that the kernel used by us is the hypercube
kernel which is not the most recommended kernel of all, but it is the easiest to
implement. Better results may be possible by using other kernel such as gaussian.

2.5 All Classifiers

In this section, we compare the classification accuracy of all classifiers discussed
in this homework. Table 4 lists the best classification accuracy of each classifier
considering all attributes in the dataset.

SVM ANN k-nn parzen window
(C = 10, γ = 1) (1 hidden layer with 2 nodes) (k = 2) (h = 40)

99.2 97.6 98.2 94.2

Table 4: Classification Accuracy for all classifiers using all attributes in the dataset

5

Not surprisingly, SVM gives the best results among all classifiers. k-nn comes
close second with k = 2 and 98.2% classification accuracy which explains the
popularity of the k-nearest neighbor approach. Not only it gives results that are
comparable to the best possible results available using other classifiers, it is easy
to implement, needs tuning for only a single parameter k (that can tuned using
cross-validation) and is gives fast results if a kd-tree (or similar) technique is used
to store the distance information among the instances.

3 Problem 1

In this problem, we wish to compare the classification ability of the linear
separating hyperplanes obtained by optimizing two different cost functions.
The separating hyperplanes are to be used for two-class classification problem.
One cost function simultaneously maximizes the between-class variance and
mini-mizes the within-class variance for the two classes. This is the Fisher’s
Linear Discriminant (FLD) cost function. The other cost function just maximizes
the between-class variance. For this problem also, we have used a pendigits dataset
introduced in Section 1.2. Since our problem is related to linear discriminant
functions, we want a 2-class dataset that is approximately linearly separable. We
investigated the dataset and found that for classes 1 and 4, the features 1 and
8 are approximately linearly separable in 2D and the features 1, 8 and 15 are
approximately linearly separable in 3D (Figure 9(a) and 9(b)). Classes 1 and 4
have 780 and 719 training instances and 363 and 336 testing instances respectively.

First we considered the 2D case. We calculated the overall scatter matrix as

SW =
∑
x∈C1

(x−m1)(x−m1)T +
∑
x∈C2

(x−m2)(x−m2)T

and the projection direction as wopt = S−1
W (m1 − m2). m1 and m2 are the

means of training data from the two classes. Optimizing the FLD cost function
gives us the optimal weight vector but in order to derive the discriminant function
(wT x + w0), we also need the bias term w0. For this, we posed the FLD problem
as a linear least squares problem (see [] Section 4.1.5) and obtained an expression
for the bias of the form w0 = −wT

optm where m is the mean of the total training
dataset, given by

m =
1
N

N∑
n=1

xn

6

3.1 Results and Discussion

Figure 10(a) shows the wopt (black line) and the separating hyperplane (magenta
line) that are obtained by optimizing the FLD cost function. From the figure, it is
apparent that wopt is infact a good choice for maximizing the between-class vari-
ance and minimizing the within-class scatter for the two classes. When we do not
include the within-class scatter in the cost function, we are effectively setting SW

to identity matrix and in this case, wopt is simply (m1−m2) i.e. the optimal weight
vector is along the line joining the two class means. For this case, the weight vector
wopt and the separating hyperplane are shown in Figure 10(b). We refer to these
as difference-of-mean weight vector and difference-of-mean hyperplane. From the
figure, we can tell that in general these are not the best choices for the optimal
weight vector and the separating hyperplane. Interestingly enough, when we used
these hyperplanes to classify the test data from the two classes, the results were
a little counter intuitive. The difference-of-mean hyperplane performed slightly
better than the FLD hyperplane. The numerical results are summarized in Table 5.

FLD Difference of Means
95.85 96.85

Table 5: Classification accuracy comparison in 2D

We had anticipated that FLD classifier will perform better than the difference-
of-means classifier. The unexpected result may be due to the particular
distributions of the two classes. We can definitely construct two class distributions
where the FLD classifier performs better than the difference-of-means classifier.
We demonstrate such a case later in our report. For right now, we proceed with
discussing the performance comparison between the two classifiers on 3D dataset.

For the 3D case, we obtain wopt and w0 for both types of classifiers, simi-
larly to the 2D case. Figures 11(a) and 11(b) show the weight vector wopt and the
separating hyperplanes for the two classifiers. In 3D also, the difference-of-means
classifier performs better than the FLD classifier as is apparent from Table 6.

FLD Difference of Means
96.57 98.14

Table 6: Classification accuracy comparison in 3D

A little earlier in our report, we had commented that in general we expect FLD
classifier to perform superior to the difference-of-means classifier. The reason is
that FLD cost function simultaneously optimizes two different criteria (maximize

7

between-class variance and minimize within-class variance) which is more logi-
cal. But there may be some data distributions for which the latter performs better.
This is precisely the case with our selected real dataset. On the other hand, we can
show that there exist data distributions for which FLD classifier will perform bet-
ter. One such example is shown in Figure 12(a) and 12(b), where we have shown
the FLD classifier and difference-of-mean classifier results for 2 class Gaussian
distributions. The means of the Gaussian distributions are horizontally displaced
from each other and their axes of maximum variance are parallel to each other and
inclined at an angle with the horizontal. From the numbers in Table 7, we ob-
serve that FLD gives perfect classification (100% accuracy) for this dataset while
difference-of-mean classifier yields 95.8% accuracy.

FLD Difference of Means
100 95.8

Table 7: Classification accuracy comparison in 2D for a mixture of gaussians

References

[1] Libsvm – a library for support vector machines.
http://www.csie.ntu.edu.tw/ cjlin/libsvm/.

[2] Pen-based recognition of handwritten digits data
set. http://archive.ics.uci.edu/ml/datasets/Pen-
Based+Recognition+of+Handwritten+Digits.

[3] A practical guide to support vector classification.
http://www.csie.ntu.edu.tw/ cjlin/papers/guide/guide.pdf.

[4] Weka - data mining with open source machine learning software in java.
http://www.cs.waikato.ac.nz/ml/weka/.

[5] A. Asuncion and D. Newman. Uci: Machine learning repository, 2007.

[6] J. C. Platt. Fast training of support vector machines using sequential minimal
optimization. pages 185–208, 1999.

[7] I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2nd Edition, 2005.

8

Figure 1: Weka - Explorer Interface
9

Figure 2: Plot matrix for the dataset

10

Figure 3: Classification accuracy for SVM for increasing values of C

11

Figure 4: Classification accuracy for ANN with different network configurations

12

Figure 5: Classification accuracy for k-nearest neighbors

13

Figure 6: lmax implemented in Weka’s GUI

14

Figure 7: Parzen Window classifier implemented in Weka’s GUI

15

Figure 8: Classification accuracy for parzen window classifier

16

(a)

(b)

Figure 9: (a) Scatter plot for attributes 1 and 8 (b) 3D plot for attributes 1 and 8
and 15

17

(a)

(b)

Figure 10: (a) FLD hyperplane in 2D (b) Difference of means hyperplane in 2D

18

(a)

(b)

Figure 11: (a) FLD hyperplane in 3D (b) Difference of means hyperplane in 3D

19

(a)

(b)

Figure 12: (a) FLD hyperplane in 2D for a mixture of gaussians(b) Difference of
means hyperplane in 2D for a mixture of gaussians

20

	Problem 2 and 3: Methodology
	Toolkit
	Dataset
	Attribute Selection

	Problem 2 and 3: Experiments
	Support Vector Classification
	Neural Network Classification
	K-nearest neighbors Classification
	Parzen window classification
	All Classifiers

	Problem 1
	Results and Discussion

