1. Let E_{1} and E_{2} be measurable, and show $\left|E_{1} \cup E_{2}\right|+\left|E_{1} \cap E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|$.
2. (a) Let $\left\{q_{1}, q_{2}, \ldots\right\}$ be an enumeration of the set of rational numbers in $(0,1)$. Define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}2^{-n} & x=q_{n} \\ 0 & \text { otherwise }\end{cases}
$$

Is f of bounded variation? Why?
(b) Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ such that $f=0$ almost everywhere and f does not have a bounded variation. Justify your answer.
3. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$, measurable with $f_{n} \geq f_{n+1}$ and $f_{n} \rightarrow f$ pointwise. Suppose also there exists $g \in L^{1}$ with $g \geq f_{n}$. Show $\lim _{n \rightarrow \infty} \int f_{n}=\int f$.
4. (53) Let $f_{n} \in L^{p}([0,1]), 1<p<\infty$ with $\left\|f_{n}\right\|_{p} \leq 1$ for all n. Set $F_{n}(x)=\int_{0}^{x} f_{n}(t) d t$. Prove that F_{n} has a subsequence which converges uniformly on $[0,1]$.
5. (I-4) Suppose $f:[0,1] \rightarrow \mathbb{R}$ is differentiable at every $x \in[0,1]$ where by differentiable at 0 and 1 , we understand that as left and right differentiability, respectively. Prove that f^{\prime} is continuous if and only if f is uniformly differentiable, i.e, if and only if for all $\epsilon>0$, there is an $h_{0}>0$ such that

$$
\left|\frac{f(x+h)-f(x)}{h}-f^{\prime}(x)\right|<\epsilon
$$

whenever $0 \leq x, x+h \leq 1$ and $0<|h|<h_{0}$.

