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1. Introduction 

In statistics, maximum-likelihood estimation (MLE) is a method of estimating the parameters 

of a statistical model. When applied to a data set and given a statistical model, 

maximum-likelihood estimation provides estimates for the model's parameters. 

In maximum likelihood estimation, we search over all possible sets of parameter values for a 

specified model to find the set of values for which the observed sample was most likely. That is, 

we find the set of parameter values that, given a model, were most likely to have given us the 

data that we have in hand. 

 

2. Basic method 

Suppose there is a sample 𝑥1, 𝑥2, … , 𝑥𝑁  of n independent and identically distributed 

observations from a distribution with an unknown probability density function 𝑓0. We can say 

that the function 𝑓0 belongs to a certain family of distributions *𝑓(𝑥│θ), θ ∈ Θ+ , where θ is a 

vector of parameters for this family, so that so that 𝑓0 = 𝑓(𝑥|θ0). The value θ0 is unknown and 

is referred to as the true value of the parameter. So, using MLE, we want to find an estimator 

which would be as close to the true value θ0 as possible. 

To use the method of maximum likelihood, one first specifies the joint density function for all 

observations. For an independent and identically distributed sample, this joint density function is 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑁|θ) = 𝑓(𝑥1|θ)𝑓(𝑥2|θ)𝑓(𝑥3|θ) × … × 𝑓(𝑥𝑁|θ) 

As each sample 𝑥𝑖 is independent with each other, the likelihood of θ with the observation 

of samples 𝑥1, 𝑥2, … , 𝑥𝑛 can be defined as: 

L(θ; 𝑥1, 𝑥2, … , 𝑥𝑁) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑁|θ) = ∏ 𝑓(𝑥𝑖│θ)

𝑁

𝑖=1

 

In practice, it’s more convenient to take ln for the both sides, called log-likelihhod. Then the 

formula becomes: 

𝑙𝑛L(θ; 𝑥1, 𝑥2, … , 𝑥𝑁) = ∑ 𝑙𝑛𝑓(𝑥𝑖│θ)

𝑁

𝑖=1

 

Then, for a fixed set of samples, to maximize the likelihood of θ, we should choose the data 

that satisfied: 

{θ̂𝑀𝐿𝐸} = {𝑎𝑟𝑔𝑚𝑎𝑥
θ∈Θ

𝑙𝑛L(θ; 𝑥1, 𝑥2, … , 𝑥𝑁)} = {𝑎𝑟𝑔𝑚𝑎𝑥
θ∈Θ

∑ 𝑙𝑛𝑓(𝑥𝑖|θ)

𝑁

𝑖=1

} 



To find the maximum of 𝑙𝑛L(θ; 𝑥1, 𝑥2, … , 𝑥𝑁), we take the derivative of θ on it and find theθ 

value that make the derivation equals to 0. 

𝑑

𝑑θ
𝑙𝑛L(θ; 𝑥1, 𝑥2, … , 𝑥𝑁) = 0 

To check our result we should garentee that the second derivative of θ  on 

𝑙𝑛L(θ; 𝑥1, 𝑥2, … , 𝑥𝑛) is negative. 

𝑑2

𝑑2θ
𝑙𝑛L(θ; 𝑥1, 𝑥2, … , 𝑥𝑁) < 0 

 

3. Practice considerations 

3.1 Log-likelihood 

Just as mentioned above, to make life a little easier, we can work with the natural log of 

likelihoods rather than the likelihoods themselves. The main reason for this is, computational 

rather than theoretical. If you multiply lots of very small numbers together (say all less than 

0.0001) then you will very quickly end up with a number that is too small to be represented by 

any calculator or computer as different from zero. This situation will often occur in calculating 

likelihoods, when we are often multiplying the probabilities of lots of rare but independent 

events together to calculate the joint probability. 

With log-likelihoods, we simply add them together rather than multiply them 

(log-likelihoods will always be negative, and will just get larger (more negative) rather than 

approaching 0). 

So, log-likelihoods are conceptually no different to normal likelihoods. When we optimize 

the log-likelihood, with respect to the model parameters, we also optimize the likelihood with 

respect to the same parameters, for there is a one-to-one (monotonic) relationship between 

numbers and their logs. 

 

3.2 Removing the constant 

For example the likelihood function for the binomial distribution is: 

𝐿𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 = (
𝑛

𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 

In the context of MLE, we noted that the values representing the data will be fixed: these 

are n and k. In this case, the binomial 'co-efficient' depends only upon these constants. Because it 

does not depend on the value of the parameter p we can essentially ignore this first term. This is 

because any value for p which maximizes the above quantity will also maximize 

𝑝𝑘(1 − 𝑝)𝑛−𝑘 

This means that the likelihood will have no meaningful scale in and of itself. This is not 

usually important, however, for as we shall see, we are generally interested not in the absolute 

value of the likelihood but rather in the ratio between two likelihoods - in the context of a 

likelihood ratio test. 

We may often want to ignore the parts of the likelihood that do not depend upon the 

parameters in order to reduce the computational intensity of some problems. Even in the simple 

case of a binomial distribution, if the number of trials becomes very large, the calculation of the 

factorials can become infeasible. 

 



3.3 Numerical MLE 

Sometimes we cannot write an equation that can be differentiated to find the MLE 

parameter estimates. This is especially likely if the model is complex and involves many 

parameters and/or complex probability functions. (e.g. the normal mixture probability 

distribution) 

In this scenario, it is also typically not feasible to evaluate the likelihood at all points, or even 

a reasonable number of points. In the parameter space of the problem in the coin toss example, 

the parameter space was only one-dimensional (i.e. only one parameter) and ranged between 0 

and 1. Nonetheless, because p can theoretically take any value between 0 and 1, the MLE will 

always be an approximation (albeit an incredibly accurate one) if we just evaluate the likelihood 

for a finite number of parameter values. For example, we chose to evaluate the likelihood at 

steps of 0.02. But we could have chosen steps of 0.01, of 0.001, of 0.000000001, etc. In theory 

and practice, one has to set a minimum tolerance by which you are happy for your estimates to 

be out. This is why computers are essential for these types of problems: they can tabulate lots 

and lots of values very quickly and therefore achieve a much finer resolution. 

 

4. Some basic examples 

4.1 Poisson Distribution 

For Poisson distribution the expression of probability is: 

P(X = 𝑥) =
𝜆𝑥𝑒−𝜆

𝑥!
 

Let 𝑋1, 𝑋2, … , 𝑋𝑁  be the Independent and identically distributed (iid) Poisson random 

variables. Then, we will have a joint frequency function that is the product of marginal frequency 

functions. The log likelihood of Poisson distribution thus should be: 

𝑙𝑛L(λ; 𝑋1, 𝑋2, … , 𝑋𝑁) = ∑ 𝑙𝑛𝑓(𝑋𝑖|λ)

𝑁

𝑖=1

= ∑ 𝑙𝑛
𝜆𝑋𝑖𝑒−𝜆

𝑋𝑖!

𝑁

𝑖=1

= ∑(𝑋𝑖𝑙𝑛𝜆 − λ − ln𝑋𝑖!)

𝑁

𝑖=1

= 𝑙𝑛𝜆 ∑ 𝑋𝑖

𝑁

𝑖=1

− 𝑁𝜆 − ∑ ln𝑋𝑖!

𝑁

𝑖=1

 

Take the derivative of λ on it and find theλ value that make the derivation equals to 0. 

𝑑

𝑑λ
𝑙𝑛L(λ; 𝑋1, 𝑋2, … , 𝑋𝑁) = 0 

𝑑

𝑑λ
(𝑙𝑛𝜆 ∑ 𝑋𝑖

𝑁

𝑖=1

− 𝑁𝜆 − ∑ ln𝑋𝑖!

𝑁

𝑖=1

) = 0 

∑ 𝑋𝑖
𝑁
𝑖=1

𝜆
− 𝑁 = 0 

𝜆 =
∑ 𝑋𝑖

𝑁
𝑖=1

𝑁
 

Thus, the ML estimation for Poisson distribution should be: 

𝜆̂ = 𝑋̅ 

 

4.2 Exponential distribution 



For exponential distribution the expression of probability is: 

P(X = 𝑥) = {
𝜆𝑒−λ𝑥   (𝑥 ≥ 0)
0           (𝑥 < 0)

 

Let 𝑋1, 𝑋2, … , 𝑋𝑁 be the Independent and identically distributed (iid) exponential random 

variables. As P(X = 𝑥) = 0  when x<0, no samples can sit in x<0 region. Thus, for all 

𝑋1, 𝑋2, … , 𝑋𝑁, we can only focus on the 𝑥 ≥ 0 part. Then, we will have a joint frequency 

function that is the product of marginal frequency functions. The log likelihood of exponential 

distribution thus should be: 

𝑙𝑛L(λ; 𝑋1, 𝑋2, … , 𝑋𝑁) = ∑ 𝑙𝑛𝑓(𝑋𝑖|λ)

𝑁

𝑖=1

= ∑ 𝑙𝑛𝜆𝑒−λ𝑋𝑖

𝑁

𝑖=1

= ∑(𝑙𝑛𝜆 − λ𝑋𝑖)

𝑁

𝑖=1

= N𝑙𝑛𝜆 − λ ∑ 𝑋𝑖

𝑁

𝑖=1

 

Take the derivative of λ on it and find theλ value that make the derivation equals to 0. 

𝑑

𝑑λ
𝑙𝑛L(λ; 𝑋1, 𝑋2, … , 𝑋𝑁) = 0 

𝑑

𝑑λ
(N𝑙𝑛𝜆 − λ ∑ 𝑋𝑖

𝑁

𝑖=1

) = 0 

𝑁

𝜆
− ∑ 𝑋𝑖

𝑁

𝑖=1

= 0 

λ =
𝑁

∑ 𝑋𝑖
𝑁
𝑖=1

 

Thus, the ML estimation for exponential distribution should be: 

𝜆̂ =
1

𝑋̅
 

 

4.3 Gaussian distribution 

For Gaussian distribution the expression of probability is: 

P(X = 𝑥) =
1

(2𝜋)
1
2

∙
1

|Σ|
1
2

∙ exp {−
(𝑥 − 𝜇)2

2Σ
} 

Let 𝑋1, 𝑋2, … , 𝑋𝑁 be the Independent and identically distributed (iid) Gaussian random variables. 

Then, we will have a joint frequency function that is the product of marginal frequency functions. 

The log likelihood of Gaussian distribution thus should be: 

𝑙𝑛L(μ, Σ; 𝑋1, 𝑋2, … , 𝑋𝑁) = ∑ 𝑙𝑛𝑓(𝑋𝑖|μ, Σ)

𝑁

𝑖=1

= ∑ 𝑙𝑛
1

(2𝜋)
1
2

∙
1

|Σ|
1
2

∙ exp {−
(𝑋𝑖 − 𝜇)2

2Σ
}

𝑁

𝑖=1

=
N

2
ln

1

2𝜋
+

N

2
ln

1

Σ
−

∑ (𝑋𝑖 − 𝜇)2𝑁
𝑖=1

2Σ
 

Take the derivative of μ, Σ on it and find the μ, Σ value that make the derivation equals to 0. 

𝑑

𝑑μ
𝑙𝑛L(μ, Σ; 𝑋1, 𝑋2, … , 𝑋𝑁) =

𝑑

𝑑μ
−

∑ (𝑋𝑖 − 𝜇)2𝑁
𝑖=1

2Σ
= −

∑ (𝑋𝑖 − 𝜇)𝑁
𝑖=1

Σ
= 0 

∑(𝑋𝑖 − 𝜇)

𝑁

𝑖=1

= 0 



𝜇 =
∑ 𝑋𝑖

𝑁
𝑖=1

𝑁
 

𝑑

𝑑Σ
𝑙𝑛L(μ, Σ; 𝑋1, 𝑋2, … , 𝑋𝑁) =

𝑑

𝑑Σ

N

2
ln

1

Σ
−

∑ (𝑋𝑖 − 𝜇)2𝑁
𝑖=1

2Σ
= −

N

2Σ
+

∑ (𝑋𝑖 − 𝜇)2𝑁
𝑖=1

2Σ2
= 0 

Σ =
∑ (𝑋𝑖 − 𝜇)2𝑁

𝑖=1

𝑁
 

Thus, the ML estimation for Gaussian distribution should be: 

𝜇̂ = 𝑋̅ 

𝛴̂ =
∑ (𝑋𝑖 − 𝜇̂)2𝑁

𝑖=1

𝑁
 

 

5. Some advanced examples 

5.1 Expression of Estimated Parameters 

The above estimation all base on the assumption that the distribution to be estimated 

follows the distribution of a single function, but how about the estimation of the mixture of 

functions? 

To simplify the problem, we only talk about Gaussian Mixture Model (GMM) here. Using the 

same method, it’s easy to extend it to other kind of mixture model and the mixture between 

different models. 

 To start with, we should know that if we set the number of Gaussian function to be used in 

the GMM estimation flexible, we will find out that the number of Gaussian function will never 

reach a best solution, as adding more Gaussian functions into the estimation will subsequently 

improve the accuracy anyway. As calculating how many Gaussian function is include in GMM is a 

clustering problem. We assume to know the number of Gaussian function in GMM as k here. 

As this distribution is a mixture of Gaussian, the expression of probability is: 

𝑝(X = 𝑥) = ∑ 𝑔𝑗(𝑥)𝛼𝑗

𝑘

𝑗=1

 

𝛼𝑗 is the weight of Gaussian function 𝑔𝑗(𝑥).  

𝑔𝑗(𝑥) =
1

(2𝜋)
1
2

∙
1

|Σ𝑗|
1
2

∙ exp {−
(𝑥 − 𝜇𝑗)

2

2Σ𝑗
} 

 

Thus, the parameters to be estimated are: 

θ = (𝜇1, 𝜇2, … , 𝜇𝑘 , 𝛴1, 𝛴2, … , 𝛴𝑘 , 𝛼1, 𝛼2, … , 𝛼𝑘) 

Let 𝑋1, 𝑋2, … , 𝑋𝑁  be the Independent and identically distributed (iid) Gaussian Mixture 

Model (GMM) random variables.  

Following Bayes rule, the responsibility that a mixture component takes for explaining an 

observation 𝑋𝑖 is: 

P(j|𝑋𝑖 , 𝜃) =
𝑝(𝑋𝑖|𝑗, 𝜃)𝑃(𝑗|𝜃)

𝑝(𝑋𝑖|𝜃)
=

𝑔𝑗(𝑋𝑖)𝛼𝑗

∑ 𝑔𝑙(𝑋𝑖)𝛼𝑙
𝑘
𝑙=1

 

Then, we will have a joint frequency function that is the product of marginal frequency 

functions. The log likelihood of Gaussian Mixture Model distribution thus should be: 



𝑙𝑛L(𝜃; 𝑋1, 𝑋2, … , 𝑋𝑁) = ∑ 𝑙𝑛𝑝(𝑋𝑖|𝜃)

𝑁

𝑖=1

 

Take the derivative of 𝜇𝑗 , Σ𝑗 on it and find the 𝜇𝑗 , Σ𝑗  value that make the derivation equals 

to 0. 

𝑑

𝑑𝜇𝑗
𝑙𝑛L(𝜃, Σ; 𝑋1, 𝑋2, … , 𝑋𝑁) =

𝑑

𝑑𝜇𝑗
∑ 𝑙𝑛𝑝(𝑋𝑖|𝜃)

𝑁

𝑖=1

= ∑
𝑑

𝑑𝜇𝑗
𝑙𝑛𝑝(𝑋𝑖|𝜃)

𝑁

𝑖=1

= ∑
1

𝑝(𝑋𝑖|𝜃)

𝑑

𝑑𝜇𝑗
𝑝(𝑋𝑖|𝜃)

𝑁

𝑖=1

= ∑
1

𝑝(𝑋𝑖|𝜃)

𝑑

𝑑𝜇𝑗
∑ 𝑔𝑗(𝑋𝑖)𝛼𝑗

𝑘

𝑗=1

𝑁

𝑖=1

= ∑
1

𝑝(𝑋𝑖|𝜃)

𝑑

𝑑𝜇𝑗
(𝑔𝑗(𝑋𝑖)𝛼𝑗)

𝑁

𝑖=1

= ∑
1

𝑝(𝑋𝑖|𝜃)

𝑑

𝑑𝜇𝑗
(

1

(2𝜋)
1
2

∙
1

|Σ𝑗|
1
2

∙ exp {−
(𝑋𝑖 − 𝜇𝑗)

2

2Σ𝑗
} 𝛼𝑗)

𝑁

𝑖=1

= ∑
1

𝑝(𝑋𝑖|𝜃)

1

(2𝜋)
1
2

∙
1

|Σ𝑗|
1
2

∙ exp {−
(𝑋𝑖 − 𝜇𝑗)

2

2Σ𝑗
} 𝛼𝑗 (−

2(𝑋𝑖 − 𝜇𝑗)

2Σ𝑗
)

𝑁

𝑖=1

= ∑
𝑔𝑗(𝑋𝑖)𝛼𝑗

𝑝(𝑋𝑖|𝜃)
(−

2(𝑋𝑖 − 𝜇𝑗)

2Σ𝑗
)

𝑁

𝑖=1

= − ∑ P(j|𝑋𝑖 , 𝜃)
𝑋𝑖 − 𝜇𝑗

Σ𝑗

𝑁

𝑖=1

 

𝑑

𝑑𝜇𝑗
𝑙𝑛L(𝜃, Σ; 𝑋1, 𝑋2, … , 𝑋𝑁) = 0 

∑ P(j|𝑋𝑖 , 𝜃)
𝑋𝑖 − 𝜇𝑗

Σ𝑗

𝑁

𝑖=1

= 0 

𝜇𝑗 =
∑ P(j|𝑋𝑖 , 𝜃)𝑋𝑖

𝑁
𝑖=1

∑ P(j|𝑋𝑖 , 𝜃)𝑁
𝑖=1

 



𝑑

𝑑Σ𝑗
𝑙𝑛L(𝜃, Σ; 𝑋1, 𝑋2, … , 𝑋𝑁) = ∑

1

𝑝(𝑋𝑖|𝜃)

𝑑

𝑑Σ𝑗
(𝑔𝑗(𝑋𝑖)𝛼𝑗)

𝑁

𝑖=1

= ∑
𝛼𝑗

𝑝(𝑋𝑖|𝜃)
∙

1

(2𝜋)
1
2

∙
𝑑

𝑑Σ𝑗
(

1

|Σ𝑗|
1
2

∙ exp {−
(𝑋𝑖 − 𝜇𝑗)

2

2Σ𝑗
})

𝑁

𝑖=1

= ∑
𝛼𝑗

𝑝(𝑋𝑖|𝜃)

𝑁

𝑖=1

∙
1

(2𝜋)
1
2

(−
1

2|Σ𝑗|
3
2

exp {−
(𝑋𝑖 − 𝜇𝑗)

2

2Σ𝑗
} +

1

|Σ𝑗|
1
2

∙ exp {−
(𝑋𝑖 − 𝜇𝑗)

2

2Σ𝑗
} ∙

(𝑋𝑖 − 𝜇𝑗)
2

2Σ𝑗
2 )

= ∑
𝛼𝑗

𝑝(𝑋𝑖|𝜃)
∙

1

2(2𝜋)
1
2|Σ𝑗|

3
2

exp {−
(𝑋𝑖 − 𝜇𝑗)

2

2Σ𝑗
} (−1 +

(𝑋𝑖 − 𝜇𝑗)
2

Σ𝑗
)

𝑁

𝑖=1

= ∑
𝑔𝑗(𝑋𝑖)𝛼𝑗

𝑝(𝑋𝑖|𝜃)
∙

1

2Σ𝑗
(−1 +

(𝑋𝑖 − 𝜇𝑗)
2

Σ𝑗
)

𝑁

𝑖=1

= ∑ P(j|𝑋𝑖 , 𝜃) ∙
1

2Σ𝑗
(−1 +

(𝑋𝑖 − 𝜇𝑗)
2

Σ𝑗
)

𝑁

𝑖=1

 

𝑑

𝑑Σ𝑗
𝑙𝑛L(𝜃, Σ; 𝑋1, 𝑋2, … , 𝑋𝑁) = 0 

∑ P(j|𝑋𝑖 , 𝜃) ∙
1

2Σ𝑗
(−1 +

(𝑋𝑖 − 𝜇𝑗)
2

Σ𝑗
)

𝑁

𝑖=1

= 0 

∑ P(j|𝑋𝑖 , 𝜃) ((𝑋𝑖 − 𝜇𝑗)
2

− Σ𝑗)

𝑁

𝑖=1

= 0 

Σ𝑗 =
∑ P(j|𝑋𝑖 , 𝜃)(𝑋𝑖 − 𝜇𝑗)

2𝑁
𝑖=1

∑ P(j|𝑋𝑖 , 𝜃)𝑁
𝑖=1

 

 The 𝛼𝑗  is subject to ∑ 𝛼𝑗
𝑘
𝑗=1 = 1 . Basic optimization theories show that 𝛼𝑗 

𝑖𝑠 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑏𝑦: 

𝛼𝑗 =
∑ 𝑝(j|𝑋𝑖 , 𝜃)𝑁

𝑖=1

𝑁
 

Thus, the ML estimation for Gaussian Mixture Model distribution should be: 

𝜇𝑗̂ =
∑ P(j|𝑋𝑖,𝜃)𝑋𝑖

𝑁
𝑖=1

∑ P(j|𝑋𝑖,𝜃)𝑁
𝑖=1

; Σ𝑗̂ =
∑ P(j|𝑋𝑖,𝜃)(𝑋𝑖−𝜇𝑗̂)

2𝑁
𝑖=1

∑ P(j|𝑋𝑖,𝜃)𝑁
𝑖=1

; 𝛼𝑗 =
∑ 𝑝(j|𝑋𝑖,𝜃)𝑁

𝑖=1

𝑁
 

 

5.2 Practical Implementation 

Now we can observe that, as the Gaussian Mixture Model with K Gaussian functions have 3K 

parameters, to find the best vector of parameters set, θ, is to find the optimized parameters in 

3K dimension space. As the Gaussian Mixture Model include more Gaussian functions, the 



complexity of computing the best θ will go incrediblily high. Also, we can see that all the 

expressions of μ, Σ and α include themselves directly or indirectly, it’s implossible to get 

the value of the parameters within one time calculation. 

Now it’s time to introduce a method for finding maximum likelihood with large number of 

latent variables (parameters), Expectation–maximization (EM) algorithm. 

In statistics, an expectation–maximization (EM) algorithm is an iterative method for finding 

maximum likelihood estimates of parameters in statistical models, where the model depends on 

unobserved latent variables (the parameters). The EM iteration alternates between performing 

an expectation (E) step, which creates a function for the expectation of the log-likelihood 

evaluated using the current estimate for the parameters, and a maximization (M) step, which 

computes parameters maximizing the expected log-likelihood found on the E step. These 

parameter-estimates are then used to determine the distribution of the latent variables in the 

next E step. 

In short words, to get the best θ for our maximum likelihood, firstly, for the expectation 

step, we should evaluate the weight of each cluster with the current parameters. Then, for the 

maximization step, we re-estimate parameters using the existing weight. 

By repeating these calculation process for several times, the parameters will approach the 

value for the maximum likelihood. 
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