
Question 1 
Parametric methods compute the parametric decision boundaries to approximate the true 
decision boundaries between classes.  One common parametric method involves the use of the 
Fisher linear discriminant to find a projection such that the projected data can best be separated.  
The Fisher linear discriminant for two classes with d1 samples from class 1 and the remaining 
samples from class 2 is defined as follows: 
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is the within class scatter. 

Maximizing the Fisher linear discriminant yields the optimal projection ( )21
1 mmSw

vvv
−= −∗ω .  

Intuitively, this optimization problem is computing the projection that maximizes the ratio 
between the separation of the means of the projected data and the within class scatter of the 
projected data – producing a projection that separates the projected means while reducing the 
scatter/variance of the projected data.   
 
The goal of this question is to evaluate the performance of the classifier using ∗ωv as the 
projection versus using ( )21 mmI

vvv −=ω .  The following procedure was followed in writing the 
Matlab algorithm: 

• Generate correlated Gaussian data from class 1 and class 2.  Data from class 1 and class 2 
have the same covariance (i.e. 21 ∑=∑ ), but the means are different (i.e. ∆+= 12 mm vv to 
produce separation between the classes.  The mean of class 1 is set as 

{ }2,,5.1,1,5.01
Nm Kv = . 

• Compute the optimal projection ( )21
1 mmSw

vvv
−= −∗ω .   

• Apply the projection to the data: by
vvv =∗ω . 

• Find the threshold to classify the data: 
2

~~
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0
mm −

=ω for Gaussian data from two classes 

with equal covariance matrices. 
• Classify the ith data point as from class 1 if 0ω>ib , else from class 2.  Count number of 

true and false classifications. 
• Repeat procedure for ( )21 mmI

vvv −=ω  on same data. 
• Compare the performance of classification using ∗ωv  versus using Iωv . 

 



To evaluate the performance of the two different methods, several simulations were performed to 
assess: (1) performance as a function of separation between classes, (2) performance as a 
function of feature vector dimension size, and (3) performance as a function of number of 
samples. 
 
Case 1: Separation 
Recall that ∆+= 12 mm vv .  To evaluate performance as a function of separation between classes, 
∆  was varied from 0 to 4 while the feature vector size was kept at N = 4 and the number of 
samples for each class was 10000.  Figure 1 shows the results, revealing that the method 
employing ∗ωv  outperforms the method using Iωv at all separations.  It is interesting to note that at 
very small and very large separations the performance of both methods are somewhat similar – 
but at intermediate separations, method ∗ωv  is superior in accuracy to method Iωv by 
approximately 10%.  This is to be expected, as when the data has no separation, no method will 
achieve more than chance accuracy, no matter how good the algorithm is; when there is a very 
large separation, any decent method should produce good classification. 
 

 
Figure 1: Performance as a function of data separation. 

 
Case 2: Feature vector dimension size 
To evaluate performance as a function of separation between classes feature vector dimension 
size N was varied while the separation was set at ∆ = 1.5 and the number of samples for each 
class was 10000.  Figure 2 depicts the results, again showing that the performance of ∗ωv is 
superior to that of method Iωv by about 10% in accuracy at all feature vector dimension sizes.  An 
increase in dimension size when N is small results in a large increase in accuracy for both 
algorithms.  On the other hand, an additional increase in dimension size when N is already large 
only results in minimal improvement in accuracy for both algorithms.   



 
Figure 2: Performance as a function of feature vector dimension size. 

 
Case 3: Data sample size 
To evaluate performance as a function of data sample size, number of samples M for each class 
was varied with the separation set at ∆  = 1.5 and the feature vector dimension equal to 4.  Figure 
3 shows the results.  It is interesting to note that while method ∗ωv  outperforms Iωv  at all sample 
sizes, neither method exhibited an increase in accuracy as sample size increases. 
  

 
Figure 3: Performance as a function of data sample size . 



Discussion of Results 
In all the simulations conducted above, method ∗ωv  achieved superior performance over Iωv .  
While the simulations by no means cover all possible cases, the results do reveal with a large 
degree of certainty that ∗ωv  is superior – possibly explainable by theory.  Recall that the Fisher 
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.  Maximizing ( )ωvJ  finds the projection ∗ωv  that 

increases the separation between the means of the projected data as well as reducing the within-
class scatter of the data to produce minimal overlap between classes.  The denominator of the 
Fisher discriminant not only serves to make ( )ωvJ  independent of ω

v
 but also regulates the 

within-class scatter.  On the other hand, the projection ( )21 mmI
vvv −=ω  does not account for 

within-class scatter – resulting in a sub-optimal projection that while separating the means of the 
projected data, does not seek to optimize the variance/scatter of the projected data.  Therefore, 
method ∗ωv  can be expected to achieve superior performance over method Iωv . 
 
Question 2 
The performance of a neural network method was examined and compared to the performance of 
a support vector machine method for classification. 
 
The neural network method used in this report is part of the Neural Network Toolbox in Matlab 
(The Mathworks).  Specifically, the following functionalities were used for classification. 

• net = newpnn(P, T, SPREAD):  Implements a probabilistic neural network (PNN; a type 
of radial basis network) that is suitable for classification.  The newpnn function creates a 
two layer network by calling on a variety of functions from the Neural Network Toolbox.  
The first layer has radbas( ) neurons, and calculates the weighted inputs with dist( ) and 
its net input with netprod( ).  The second layer has compet( ) neurons, and calculates its 
weighted input with dotprod( ) and its net inputs with netsum( ).  The main function 
newpnn( ) accepts an input matrix P of input vectors and an input matrix T of target class 
vectors, and returns a new probabilistic network. 

• a = sim(net,P):Uses the new neural network designed by newpnn( ) to classify data 
matrix P.  

To evaluate the performance of this probabilistic neural network, a set of training data was used 
to design a new neural net, and a separate set testing data was used to compute the accuracy of 
the algorithm.    
 
The support vector machine (SVM) algorithm utilized in this report is authored by Mangasarian 
and Musicant in the Department of Computer Sciences at the University of Wisconsin.  The 
algorithm is named Lagrangian Support Vector Machines (LSVM) and is freely available online 
at http://www.cs.wisc.edu/dmi/lsvm/.  The technical report detailing LSVM is also available 
online from ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-06.ps.  Mangasarian and Musicant 
developed an implicit Lagrangian for the dual of a simple reformulation of the standard quadratic 
program of a linear support vector machine, leading to the minimization of an unconstrained 
differentiable convex function with dimensionality equal to the number of classified points.  The 
minimization problem is solved by a linearly convergent Lagrangian support vector machine 
algorithm, requiring the inversion at the outset of a single matrix with the order of dimensionality 



equal to the original input space plus one.  Classification was performed by training the LSVM – 
its accuracy was assessed with a separate set of testing data. 
 
As before, to evaluate and compare the performance of LSVM and PNN, several experiments 
were performed: (1) performance as a function of separation between classes, (2) performance as 
a function of feature vector dimension size, (3) performance as a function of number of samples, 
and (4) performance with different distributions.  Note that cases (1)-(3) utilized a Gaussian 
distribution. 
 
Case 1: Separation 
Recall that ∆+= 12 mm vv .  To evaluate performance as a function of separation between classes, 
∆  was varied from 0 to 4 while the feature vector size was kept at N = 4 and the number of 
samples for each class was 2000.  Note that half the samples from each class was utilized as 
training data, and the remaining half used as testing data.  Figure 4 shows the results of this 
simulation, revealing that while LSVM achieves superior accuracy with small separations (< 
0.6), PNN quickly overtakes LSVM in accuracy at approximately ∆  = 0.6.  While PNN almost 
achieves perfect accuracy at ∆  = 4, LSVM only has an accuracy of less than 90%.   
 

 
Figure 4: Performance as a function of data separation. 

 
Case 2: Feature vector dimension size 
To evaluate performance as a function of separation between classes, feature vector dimension 
size N was varied while the separation was set at ∆  = 1.5 and the number of samples for each 
class was 2000 (half used as training data, remaining half used as testing data).  Figure 5 depicts 
the results, showing that while PNN achieves superior performance at low dimension sizes (< 
12), it fails disastrously at higher dimension sizes and only achieves chance accuracy.  LSVM, 
on the other hand, steadily improves in accuracy as feature vector dimension size increases. 



 
Figure 5: Performance as a function of feature vector dimension size. 

 
Case 3: Data sample size 
To evaluate performance as a function of data sample size, the number of samples M for each 
class was varied while the separation was set at ∆  = 1.5 and the feature vector dimension size 
was 4.  Note that half of the samples was used for training and the rest for testing.  Figure 3 
shows the results, revealing that PNN consistently achieves better accuracy than LSVM at the 
given separation and dimension size for all sample sizes, although increasing the sample size 
past 1000 does not improve accuracy for either method. 

 
Figure 6: Performance as a function of data sample size . 



 
Case 4: Distribution  
To evaluate performance of LSVM and PNN for data with different distributions, correlated 
Gaussian, exponential, and uniform random data were generated.  Number of samples M for 
each class was 2000; the separation of the means was set at ∆  = 1.5; and feature vector 
dimension size was 4.  Table 1 tallies the results, showing that PNN achieved superior accuracy 
for the Gaussian and exponential data.  Both methods achieved chance accuracy for the 
uniformly distributed data, due to the lack of separation. 
 

 Gaussian Exponential Uniform 
PNN 81.45% 78.30% 50.15% 

LSVM 74.35% 72.55% 49.85% 
Table 1: Accuracy of PNN and LSVM with different distributions  

 
From the simulations conducted above, both PNN and LSVM are shown to have particular 
strengths and weaknesses.  PNN outperforms LSVM when the separation is large and feature 
vector dimension size is small.   PNN fails with large feature vector dimension sizes, while 
LSVM exhibits continued improvement in accuracy with increasingly large dimension sizes.  
PNN and LSVM are two specific algorithms examined here, so the conclusion should not be 
generalized to all support vector machines and neural networks.  Accuracy is expected to vary 
depending on the robustness of each algorithm.   
 
Question 3 
This question investigates applying the methods of Parzen windows, K-nearest neighbors, and 
nearest neighbor to classification. 
 
Parzen Windows  
Parzen windows is a nonparametric density estimation technique that can be applied to 
classification.  Using a given window function, this technique approximates the distribution of a 
training set using a window centered at a desired point 0xv to compute and sum the contribution 
from each point of the training data set.  Applied to classification, a test point is labeled by using 
the window function to compute a weighted mean of the contribution from the training points in 
each of the classes.  The test point is labeled to be from the class producing the maximum 
weighted mean.  While the choice of a window function is important, the choice of a sensible 
window size/side-length is crucial to accurate density estimation and classification.  A small 
window length may lead to spiky behavior in the density estimate while an excessively large 
window length may average out the details of the data’s underlying distribution.  To simulate the 
effect of window length on the density estimate, the following approach was taken: 

• Generate M=1000 samples from a univariate Gaussian distribution ( )1,5.0~ NX  
• Use a given Gaussian window of length h 
• Visualize the density estimate as a function of h and x using mesh( ) 
• Compute the mean squared error (MSE) of the density estimate for each window size h 

using the known underlying Gaussian distribution 
• Repeat procedure with data from a uniform distribution ( )1,0~ UX  

 



 
Figure 7: Density estimate as a function of window length for Gaussian data. 

 
As can be observed from the first subplot, tiny window length results in spiky behavior of the 
density estimate while a large window size produces excessive averaging.  The subplot with the 
MSE in fact confirms that optimal density estimation for this Gaussian data is achieved with 
window size h=0.295. 
 
Figure 8 shows the density estimate of a data set generated from the uniform distribution.  As can 
be observed, with a large window size, the density estimate starts to appear Gaussian (partly 
because the window function is Gaussian).  The minimum MSE occurs with window size 
h=0.065.  It is interesting to note that perhaps using a rectangular window function would result 



in a better density estimate for the uniform case.  If the underlying distribution is known, perhaps 
a window function of the same shape as the true underlying probability density function would 
produce the best density estimate (with an appropriate window size).  But in reality, the 
underlying distribution is complicated and rarely known, thus a generic Gaussian window 
function is commonly used.  

 
Figure 8: Density estimate as a function of window length for uniformly distributed data. 

 
Nearest Neighbor and K-Nearest Neighbor 
Nearest neighbor and K-nearest neighbor approaches are relatively simple methods used for 
classification.  Using a set of training data, the nearest neighbor approach classifies a test point to 
be from the class of the nearest training data point.  The K-nearest neighbor approach examines 
K training data neighbors surrounding a test point, and classifies the test point to be from the 



class who has more points closer to the testing point.  Figure 9 illustrates the K-nearest neighbor 
technique.  Of the five training points closest to the square testing point, three are from the blue 
class and two from the red class, therefore the testing point is labeled to be from the blue class.  

 
Figure 9: Illustration of K-Nearest Neighbor with K = 5 

 
As before, to evaluate and compare the performance of Parzen windows, nearest neighbor and K-
nearest neighbors, several simulations were performed to assess: (1) performance as a function of 
separation between classes, (2) performance as a function of feature vector dimension size, and 
(3) performance as a function of number of samples. 
 
Case 1: Separation 
Recall that ∆+= 12 mm vv .  To evaluate performance as a function of separation between classes, 
∆  was varied from 0 to 4 while the feature vector size was kept at N = 2 and the number of 
samples for each class was 1000.  The window side- length for Parzen windows is h = 0.3.  The 
number of neighbors for K-nearest neighbors is set at K = 7. 

 
Figure 10: Performance as a function of data separation. 



 
From Figure 10, it can be observed the accuracy curve for Parzen windows almost exactly 
overlaps the curve for nearest neighbors.  K-nearest neighbors method produces consistently 
better accuracy at all separations. 
 
Case 2: Feature vector dimension size 
To evaluate performance as a function of separation between classes, feature vector dimension 
size N was varied, while the separation was set at ∆  = 1.5 and the number of samples for each 
class was 1000 (half used as training data, remaining half used as testing data).  The window 
side- length for Parzen windows is h = 0.3.  The number of neighbors for K-nearest neighbors is 
set at K = 7.  Again, K-nearest neighbors has consistently higher accuracy as feature vector 
dimension size increases.  Note that increasing the dimension size does not result in a significant 
increase in accuracy for nearest neighbor or K-nearest neighbor.  On the other hand, increasing 
the dimension size results in a decrease in accuracy for the Parzen windows methods – at N > 11, 
accuracy plummets to zero percent.  This can be explained by looking at the Gaussian window 
function: 
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For N very large, the constant in front of the exponential becomes too small to be represented as 
a type double in Matlab – it is rounded to zero.  Therefore ( )uvϕ  from class 1 is equal to ( )uvϕ  
from class 2 – all are equal to zero.  The script for Parzen Windows is coded to not assign a class 
when this occurs, resulting in zero accuracy.  This suggests a crucial point when working with 
Parzen windows: with very large feature vector dimension sizes, rounding error becomes a key 
issue.   

 
Figure 11: Performance as a function of feature vector dimension size. 

 
 



 
Case 3: Data sample size 
To evaluate performance as a function of data sample size, the number of samples M for each 
class was varied while the separation was set at ∆  = 1.5 and the feature vector dimension size 
was 4.  Note that half of the samples is used for training and the rest for testing.  The window 
side- length for Parzen windows is h = 0.3.  The number of neighbors for K-nearest neighbors is 
set at K = 7.  Again, K-nearest neighbors outperforms the two other methods which overlap 
almost exactly with each other.  Increasing sample size does not appear to increase performance 
for any of these three methods. 
 

 
Figure 12: Performance as a function of data sample size . 

 
For the simulations conducted to examine Parzen windows, nearest neighbor, and K-nearest 
neighbors, K-nearest neighbors method has been shown to possess the highest accuracy.  The 
performance of Parzen windows is almost exactly the same as that of nearest neighbor in almost 
all cases examined here.  It is expected that window size and window length will significantly 
change the performance of Parzen windows classification depending on the circumstance.  
Similarly, the value for K may also be expected to alter the accuracy of K-nearest neighbors 
method depending on the situation. 
 
 
 
 
 
 
 



 
%%%%%%%%%%%%%% 
% Question 1 % 
%%%%%%%%%%%%%% 
clc; close all; 
clear all; 
 
% difvec=0:0.1:4; 
% Nvec=[2:2:50 60:10:100]; 
Mvec=[100:100:10000]; 
 
ite=length(Mvec); 
 
C1=zeros(1,ite); 
C2=C1;   
 
for iii=1:ite 
 
    %dif=difvec(iii); N=4; M=10000; 
    %N=Nvec(iii); dif=1.5; M=10000;     
    M=Mvec(iii); dif=1.5; N=4; 
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %  USER DEFINED MEAN AND VARIANCE % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % DATA IS IID HERE, MUST CORRELATE LATER 
    mu1=[1:N]/2; 
    sigma1=sqrt([1:N]); 
    % Separate data by adjusting mean and variance 
    mu2=mu1+dif; 
    sigma2=sigma1; 
 
    % diagonal of covariance of X from class 1 
    covX1=diag([sigma1.^2]'); 
    % diagonal of covariance of X from class 2 
    covX2=diag([sigma2.^2]'); 
 
    x1=zeros(M,N); x2=zeros(M,N); 
    for ii=1:N 
        x1(:,ii)=random('normal',mu1(ii),sigma1(ii),[M 1]); 
        x2(:,ii)=random('normal',mu2(ii),sigma2(ii),[M 1]); 
    end 
 
    % GENERATING POSITIVE DEFINITE MATRIX TO CORRELATE DATA 
    c=zeros(1,N); c(1)=1; 
    r=ones(1,N); 
    P=toeplitz(c,r); 
    Porth=orth(P);      % orthogonalize P 
    D=diag([1:N]);      % eigenvalues along the diagonal 
    E=inv(Porth)*D*Porth; 
 
    % generating correlated feature vectors 
    y1=x1*E; 
    y2=x2*E; 
 
    covY1=E*covX1*E'; 



    covY2=E*covX2*E'; 
 
    % Calculating means of Y1, Y2, correlated data for classes 1 and 2 
    muY1=mean(y1); 
    muY2=mean(y2); 
 
    Sw=(y1-repmat(muY1,M,1))'*(y1-repmat(muY1,M,1))+(y2-
repmat(muY2,M,1))'*(y2-repmat(muY2,M,1)); 
 
    %%%%%%%%%%% 
    % with Sw % 
    %%%%%%%%%%% 
 
    w=inv(Sw)*(([muY1-muY2])'); 
    w_s=w; 
     
    y=[y1;y2]; 
    %b=repmat(w',2*M,1).*y; 
    b=y*w; 
 
    % For univariate Gaussian with same E, threshold w0 is midway between 
    % the two projected means 
    w0=(w'*muY1'+w'*muY2')/2; 
 
    ind1=find(b(1:M)>w0);        % class 1 
    ind2=find(b(M+1:end)<w0);    % class 2 
 
    TC=length(ind1)+length(ind2);   % true classifications 
    FC=2*M-TC; 
 
    TD_FD_inv=[TC FC] 
    C1(iii)=[TC/2/M*100]; 
 
    %%%%%%%%%%%%%% 
    % without Sw % 
    %%%%%%%%%%%%%% 
    Sw=eye(N); 
    w=inv(Sw)*(([muY1-muY2])'); 
 
    y=[y1;y2]; 
    %b=repmat(w',2*M,1).*y; 
    b=y*w; 
 
    % For univariate Gaussian with same E, threshold w0 is midway between 
    % the two projected means 
    w0=(w'*muY1'+w'*muY2')/2; 
 
    ind1=find(b(1:M)>w0);        % class 1 
    ind2=find(b(M+1:end)<w0);    % class 2 
 
    TC=length(ind1)+length(ind2);   % true classifications 
    FC=2*M-TC; 
 
    TD_FD_iden=[TC FC] 
    C2(iii)=[TC/2/M*100]; 
end 
 



% figure 
% plot(difvec,C1,'rx-','linewidth',2,'MarkerSize',6); hold on 
% plot(difvec,C2,'go-','linewidth',2,'MarkerSize',6);  
% ylabel('Percent Correct Classification'); 
% xlabel('Separation of Data'); 
% title('Performance as a function of data separation'); 
% legend('\omega^*','\omega_I') 
 
% figure 
% plot(Nvec,C1,'rx-','linewidth',2,'MarkerSize',6); hold on 
% plot(Nvec,C2,'go-','linewidth',2,'MarkerSize',6);  
% ylabel('Percent Correct Classification'); 
% xlabel('Feature Vector Dimension Size (N)'); 
% title('Performance as a function of feature vector dimension size'); 
% legend('\omega^*','\omega_I') 
 
figure 
plot(Mvec,C1,'rx-','linewidth',2,'MarkerSize',6); hold on 
plot(Mvec,C2,'go-','linewidth',2,'MarkerSize',6);  
ylabel('Percent Correct Classification'); 
xlabel('Number of Samples (M)'); 
title('Performance as a function of data sample size'); 
legend('\omega^*','\omega_I') 
 
 
%%%%%%%%%%%%%% 
% Question 2 % 
%%%%%%%%%%%%%% 
 
clear all;close all;clc 
 
%difvec=0:0.1:4; 
Nvec=[1:1:30]; 
%Mvec=[100:100:1000 1500:500:3000]; 
ite=length(Nvec); 
 
C1=zeros(1,ite); 
C2=C1; 
 
for iii=1:ite 
 
    %dif=difvec(iii); N=4; M=2000; 
    N=Nvec(iii); dif=1.5; M=2000; 
    %M=Mvec(iii); dif=1.5; N=4; 
 
    [y1 y2 muY1 muY2 covY1 covY2]=gen_Ngaussian(N,M,dif); 
 
    % half of the data is for training, rest is for testing 
    tr1=y1(1:M/2,:); tr2=y2(1:M/2,:); 
    te1=y1(M/2+1:end,:); te2=y2(M/2+1:end,:); 
 
    %%%%%%% 
    % SVM % 
    %%%%%%% 
 
    A=[tr1; tr2]; 
    len=length(A); 



    D=eye(len); 
    D(len/2:end,:)=D(len/2:end,:)*-1; 
    nu = 1/size(A,1); tol = 1e-5; maxIter = 100; alpha = 1.9/nu; 
    perturb = 0; normalize = 0; 
    [iter, optCond, time, w, gamma] = lsvm(A,D,nu,tol,maxIter,alpha, ... 
        perturb,normalize); 
    % w and gamma are used to classify data points 
    res_tr=D*(A*w-gamma)>0;    % testing on training data 
    TD_FD_svmTr=[sum(res_tr) len-sum(res_tr)]; 
 
    % testing on non-training data 
    A=[te1; te2]; 
    res_te=D*(A*w-gamma)>0;    % testing on training data 
    TD_FD_svmTe=[sum(res_te) len-sum(res_te)]; 
 
    %%%%%%% 
    % ANN % 
    %%%%%%% 
    Ptr = [tr1; tr2]'; 
    len=length(tr1); 
    Tc = [ones(1,len) 2*ones(1,len)]; 
 
    T = ind2vec(Tc); 
    spread = 1; 
    net = newpnn(Ptr,T,spread); 
 
    % testing on training data 
    A = sim(net,Ptr); 
    Ac_tr = vec2ind(A); 
    TD=[sum(Ac_tr(1:len)==1)+sum(Ac_tr(len+1:end)==2)]; 
    TD_FD_annTr=[TD 2*len-TD]; 
 
    % testing on data 
    Pte = [te1; te2]'; 
    A = sim(net,Pte); 
    Ac_te = vec2ind(A); 
    TD=[sum(Ac_te(1:len)==1)+sum(Ac_te(len+1:end)==2)]; 
    TD_FD_annTe=[TD 2*len-TD]; 
 
    C1(iii)=TD_FD_svmTe(1); 
    C2(iii)=TD_FD_annTe(1); 
     
    C1(iii)=C1(iii)/M*100; 
    C2(iii)=C2(iii)/M*100; 
end 
 
% figure 
% plot(difvec,C2,'rx-','linewidth',2,'MarkerSize',6); hold on 
% plot(difvec,C1,'go-','linewidth',2,'MarkerSize',6);  
% ylabel('Percent Correct Classification'); 
% xlabel('Separation of Data'); 
% title('Performance as a function of data separation'); 
% legend('PNN','LSVM') 
 
figure 
plot(Nvec,C2,'rx-','linewidth',2,'MarkerSize',6); hold on 
plot(Nvec,C1,'go-','linewidth',2,'MarkerSize',6);  



ylabel('Percent Correct Classification'); 
xlabel('Feature Vector Dimension Size (N)'); 
title('Performance as a function of feature vector dimension size'); 
legend('PNN','LSVM') 
 
% figure 
% plot(Mvec,C2,'rx-','linewidth',2,'MarkerSize',6); hold on 
% plot(Mvec,C1,'go-','linewidth',2,'MarkerSize',6);  
% ylabel('Percent Correct Classification'); 
% xlabel('Number of Samples (M)'); 
% title('Performance as a function of data sample size'); 
% legend('PNN','LSVM') 
 
 
%%%%%%%%%%%%%% 
% Question 3 % 
%%%%%%%%%%%%%% 
 
% classification using PW, NN, KNN 
 
clear all;close all;clc 
 
difvec=0:0.1:4; 
Nvec=[1:1:30]; 
Mvec=[100:100:2000]; 
 
ite=length(Mvec); 
 
C1=zeros(1,ite); 
C2=C1; 
C3=C1; 
hi=0.3; 
k=7; 
 
for iii=1:ite 
 
    %dif=difvec(iii); N=4; M=1000; 
    %N=Nvec(iii); dif=1.5; M=1000; 
    M=Mvec(iii); dif=1.5; N=4; 
 
    [y1 y2 muY1 muY2 covY1 covY2]=gen_Ngaussian2(N,M,dif); 
 
    % half of the data is for training, rest is for testing 
    tr1=y1(1:M/2,:); tr2=y2(1:M/2,:); 
    te1=y1(M/2+1:end,:); te2=y2(M/2+1:end,:); 
 
    len=M/2; 
 
    %%%%%%%%%%%%%%%%%% 
    % Parzen Windows % 
    %%%%%%%%%%%%%%%%%% 
 
    class1=zeros(len,1); 
    class2=class1; 
 
    for ii=1:len 
        % for testing data from class 1 



        post1=1/((M/2)*(hi^N))*sum(GaussianWin(N,(repmat(te1(ii,:),M/2,1)-
tr1)/hi)); 
        post2=1/((M/2)*(hi^N))*sum(GaussianWin(N,(repmat(te1(ii,:),M/2,1)-
tr2)/hi)); 
        if post1>post2      % p(w1|x)>p(w2|x) 
            class1(ii)=1; 
        end 
 
        % for testing data from class 2 
        post1=1/((M/2)*(hi^N))*sum(GaussianWin(N,(repmat(te2(ii,:),M/2,1)-
tr1)/hi)); 
        post2=1/((M/2)*(hi^N))*sum(GaussianWin(N,(repmat(te2(ii,:),M/2,1)-
tr2)/hi)); 
        if post1<post2      % p(w1|x)<p(w2|x) 
            class2(ii)=1; 
        end 
    end 
 
    TD=sum(class1)+sum(class2); 
    FD=M-TD; 
    TD_FD=[TD FD] 
    C1(iii)=TD_FD(1)/M*100; 
 
 
    %%%%%%%%%%%%%%%%%%%% 
    % Nearest Neighbor % 
    %%%%%%%%%%%%%%%%%%%% 
 
    class1=zeros(M/2,1); 
    class2=class1; 
 
    for ii=1:M/2    % for each testing data point 
 
        s=te1(ii,:); 
        d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2));   % distance from each 
point in tr1 
        d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2));   % distance from each 
point in tr2 
 
        d1min=min(d1);   % closest point in tr1 
        d2min=min(d2);   % closest point in tr2 
 
        % if closest to a point in tr1, then classify as from class 1 
        % 0 means belonging to other class 1, 1 means belonging to correct 
class 
        if d1min<d2min 
            class1(ii)=1; 
        else 
            class1(ii)=0; 
        end 
 
        % repeat for each testing data point in class 2 
        s=te2(ii,:); 
        d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2));   % distance from each 
point in tr1 
        d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2));   % distance from each 
point in tr2 



 
        d1min=min(d1);   % closest point in tr1 
        d2min=min(d2);   % closest point in tr2 
 
        % if closest to a point in tr1, then classify as from class 1 
        if d1min<d2min 
            class2(ii)=0; 
        else 
            class2(ii)=1; 
        end 
 
    end 
 
    TD=sum(class1)+sum(class2); 
    FD=M-TD; 
 
    [true_false_nn]=[TD FD] 
    C2(iii)=true_false_nn(1)/M*100; 
 
    %%%%%%%%%%%%%%%%%%%%% 
    %K-Nearest Neighbor % 
    %%%%%%%%%%%%%%%%%%%%% 
    class1=zeros(M/2,1); 
    class2=class1; 
 
    for ii=1:M/2    % for each testing data point 
 
        s=te1(ii,:); 
        d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2));   % distance from each 
point in tr1 
        d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2));   % distance from each 
point in tr2 
 
        d1=[d1 ones(M/2,1)];         % assigning 1 to denote from class 1 
        d2=[d2 -ones(M/2,1)];        % assigning -1 to denote from class 2 
        % sorting distances 
        d=[d1;d2]; 
        ds=sortrows(d);             % sortrows only sorts the first column 
 
        dsk=ds(1:k,2); 
 
        val=sum(dsk);   % positive means class1 has more contribution, neg 
means other 
        if val>0 
            class1(ii)=1; 
        else 
            class1(ii)=0; 
        end 
 
        s=te2(ii,:); 
        d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2));   % distance from each 
point in tr1 
        d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2));   % distance from each 
point in tr2 
 
        d1=[d1 ones(M/2,1)];         % assigning 1 to denote from class 1 
        d2=[d2 -ones(M/2,1)];        % assigning -1 to denote from class 2 



        % sorting distances 
        d=[d1;d2]; 
        ds=sortrows(d);             % sortrows only sorts the first column 
 
        dsk=ds(1:k,2); 
 
        val=sum(dsk);   % positive means class1 has more contribution, neg 
means other 
        if val>0 
            class2(ii)=0; 
        else 
            class2(ii)=1; 
        end 
 
    end 
 
    TD=sum(class1)+sum(class2); 
    FD=M-TD; 
 
    [true_false_knn]=[TD FD] 
    C3(iii)=true_false_knn(1)/M*100; 
 
end 
 
% figure 
% plot(difvec,C1,'rx-','linewidth',2,'MarkerSize',8); hold on 
% plot(difvec,C2,'go-','linewidth',2,'MarkerSize',6); 
% plot(difvec,C3,'ms-','linewidth',2,'MarkerSize',6); 
% ylabel('Percent Correct Classification'); 
% xlabel('Separation of Data'); 
% title('Performance as a function of data separation'); 
% legend('Parzen Windows','Nearest Neighbor','K-Nearest Neighbors') 
 
% figure 
% plot(Nvec,C1,'rx-','linewidth',2,'MarkerSize',8); hold on 
% plot(Nvec,C2,'go-','linewidth',2,'MarkerSize',6); 
% plot(Nvec,C3,'ms-','linewidth',2,'MarkerSize',6); 
% ylabel('Percent Correct Classification'); 
% xlabel('Feature Vector Dimension Size (N)'); 
% title('Performance as a function of feature vector dimension size'); 
% legend('Parzen Windows','Nearest Neighbor','K-Nearest Neighbors') 
 
figure 
plot(Mvec,C1,'rx-','linewidth',2,'MarkerSize',6); hold on 
plot(Mvec,C2,'go-','linewidth',2,'MarkerSize',6); 
plot(Mvec,C3,'ms-','linewidth',2,'MarkerSize',6); 
ylabel('Percent Correct Classification'); 
xlabel('Number of Samples (M)'); 
title('Performance as a function of data sample size'); 
legend('Parzen Windows','Nearest Neighbor','K-Nearest Neighbors') 
 
 
 
 
 
 



 


