Question 1

Parametric methods compute the parametric decision boundaries to approximate the true
decision boundaries between classes. One common parametric method involves the use of the
Fisher linear discriminant to find a projection such that the projected data can best be separated.
The Fisher linear discriminant for two classes with d; samples from class 1 and the remaining
samples from class 2 is defined as follows:
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Maximizing the Fisher linear discriminant yields the optimal projectionw” = S, *(m - m,).

Intuitively, this optimization problem is computing the projection that maximizes the ratio
between the separation of the means of the projected data and the within class scatter of the
projected data— producing a projection that separates the projected means while reducing the
scatter/variance of the projected data
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The goal of this question is to evaluate the performance of the classifier using w" as the
projection versus usingw, = (m1 -m, ) The following procedure was followed in writing the
Matlab algorithm:
Generate correlated Gaussian data from class 1 and class 2. Data from class 1 and class 2
have the same covariance (i.e. &, =4, ), but the means are different (i.e. m, =m, + Dto
produce separation between the classes. The mean of class1 is set as

m =105 1 15 .., N,
Compute the optimal projectionw” =S, *(m - m,).
Apply the projection to the dataaw' y = b .

Find the threshold to classify the data: w, = M 2 ™ for Gaussian data from two classes

with equal covariance matrices.
Classify the i data point as from class 1 if b >w,, elsefrom class 2. Count number of

true and false classifications.
Repeat procedure for w, = (m, - m,) on same data.

Compare the performance of classification using W versus usingw, .



To evaluate the performance of the two different methods, severa simulations were performed to
assess: (1) performance as a functionof separation between classes, (2) performance as a
function of feature vector dimension size, and (3) performance as a function of number of
samples.

Case 1: Separation
Recall thatm, =m, + D. To evaluate performance as a function of separation between classes,

D was varied from 0 to 4 while the feature vector size was kept at N = 4 and the number of
samplesfor each class was10000. Figure 1 shows the results, revealing that the method

employingw™ outperforms the method usingw, at all separations. It isinteresting to note that at
very small and very large separations the performance of both methods are somewhat similar —
but at intermediate separations, method W™ is superior in accuracy to methodw, by

approximately 10%. Thisisto be expected, as when the data has no separation, no method will
achieve more than chance accur acy, no matter how good the algorithm is; when thereis avery
large separation, any decent method should produce good classification.
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Figure 1: Performance as a function of data separation.

Case 2: Feature vector dimension size

To evaluate performance as a function of separation between classes feature vector dimension
size N was varied while the separation was set at D= 1.5 and the number of samples for each
class was 10000. Figure 2 depicts the results, again showing that the performance of w'is
superior to that of methodw, by about 10% in accuracy at all feature vector dimension sizes. An
increase in dimension size when N is small resultsin a large increase in accuracy for both
algorithms. On the other hand, an additional increase in dimension size when N isaready large
only results in minimal improvement in accuracy for both algorithms.
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Figure 2: Performance as a function of feature vector dimension size.

Case 3. Data sample size
To evaluate performance as afunction of data sample size, number of samples M for each class
was varied with the separation set at D = 1.5 and the feature vector dimension equal to 4. Figure

3 showstheresults. It isinteresting to note that while method W™ outperforms w, at all sample
sizes, neither method exhibited an increase in accuracy as sample size increases.
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Figure 3: Performance as a function of data sample size.



Discussion of Results
In all the simulations conducted above, method W™ achieved superior performance over w, .
While the smulations by no means cover all possible cases, the results do reveal with alarge
degree of certainty that W’ is superior - possi bly explainable by theory. Recall that the Fisher
=0T

§*+§/ ‘TS«NW
increases the separation between the means of the projected data as well as reducing the within-
class scatter of the data to produce minimal overlap between classes. The denominator of the

Fisher discriminant not only serves to make J (W) independent of |W| but also regulates the

discriminant is J Maximizing J (W) finds the projection W' that

within-class scatter. On the other hand, the projection w, = (m, - m,) does not account for

within-class scatter — resulting in a sub-optimal projection that while separating the means of the
projected data, does not seek to optimize the variance/scatter of the projected data. Therefore,

method W™ can be expected to achieve superior performance over methodw, .

Question 2
The performance of a neural network method was examined and compared to the performance of
a support vector machine method for classification.

The neural network method used in this report is part of the Neural Network Toolbox in Matlab
(The Mathworks). Specificaly, the following functionalities were used for classification.
net = newpnn(P, T, SPREAD): Implements a probabilistic neural network (PNN; atype
of radia basis network) that is suitable for classification. The newpnn function creates a
two layer network by calling on a variety of functions from the Neural Network Toolbox.
The first layer has radbas( ) neurons, and calculates the weighted inputs with dist() and
its net input with netprod( ). The second layer has compet( ) neurons, and calculates its
weighted input with dotprod( ) and its net inputs with netsum( ). The main function
newpnn( ) accepts an input matrix P of input vectors and an input matrix T of target class
vectors, and returns a new probabilistic network.
a = sim(net,P):Uses the new neural network designed by newpnn( ) to classify data
matrix P.
To evaluate the performance of this probabilistic neural network, a set of training data was used
to design a new neural net, and a separate set testing data was used to compute the accuracy of
the algorithm.

The support vector machine (SVM) agorithm utilized in this report is authored by M angasarian
and Musicant in the Department of Computer Sciences at the University of Wisconsin. The
algorithm is named Lagrangian Support Vector Machines (LSVM) and is freely available online
a http://www.cs.wisc.edu/dmi/lsvm/. The technical report detailing LSVM is also available
online from ftp://ftp.cs.wisc.edu/pub/dmi/tech reports/00-06.ps. Mangasarian and Musicant
developed an implicit Lagrangian for the dual of a simple reformulation of the standard quadratic
program of alinear support vector machine, leading to the minimization of an unconstrained
differentiable convex function with dimensionality equal to the number of classified points. The
minimization problem is solved by alinearly convergent Lagrangian support vector machine
algorithm, requiring the inversion at the outset of a single matrix with the order of dimensionality




equal to the original input space plus one. Classification was performed by training the LSVM —
itsaccuracy was assessed with a separate set of testing data.

As before, to evaluate and compare the performance of LSVM and PNN, several experiments
were performed: (1) performance as a function of separation between classes, (2) performance as
afunction of feature vector dimension size, (3) performance as a function of number of samples,
and (4) performance with different distributions. Note that cases (1)-(3) utilized a Gaussian
distribution.

Case 1. Separation

Recdll that m, =m, + D. To evaluate performance as a function of separation between classes,
D was varied from 0O to 4 while the feature vector size was kept at N = 4 and the number of
samples for each class was 2000. Note that half the samples from each class was utilized as
training data, and the remaining half used as testing data. Figure 4 shows the results of this
simulation, revealing that while LSVM achieves superior accuracy with small separations (<
0.6), PNN quickly overtakes LSVM in accuracy at approximately D = 0.6. While PNN almost
achieves perfect accuracy at D =4, LSVM only has an accuracy of less than 90%.
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Figure 4: Performance as a function of data separation.

Case 2: Feature vector dimension size

To evaluate performance as afunction of separation between classes, feature vector dimension
sze N was varied while the separation was set at D = 1.5 and the number of samplesfor each
class was 2000 (half used as training data, remaining half used as testing data). Figure 5 depicts
the results, showing that while PNN achieves superior performance at low dimension sizes (<
12), it fails disastroudly at higher dimension sizes and only achieves chance accuracy. LSVM,
on the other hand, steadily improves in accuracy as feature vector dimension size increases.
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Figure5: Performance as a function of feature vector dimension size.

Case 3. Data sample size

To evaluate performance as a function of data sample size, the number of samplesM for each
class was varied while the separation was set at D = 1.5 and the festure vector dimension size
was 4. Notethat half of the samples was used for training and the rest for testing. Figure 3
shows the results, revealing that PNN consistently achieves better accuracy than LSVM at the
given separation and dimension size for al sample sizes, although increasing the sample size
past 1000 does not improve accuracy for either method.
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Figure 6: Performance as a function of data sample size.



Case 4. Distribution

To evaluate performance of LSVM and PNN for data with different distributions, correlated
Gaussian, exponential, and uniform random data were generated. Number of samples M for
each class was 2000; the separation of the meanswas set at D = 1.5; and feature vector
dimension sizewas 4. Table 1 tallies the results, showing that PNN achieved superior accuracy
for the Gaussian and exponential data. Both methods achieved chance accuracy for the
uniformly distributed data, due to the lack of separation.

Gaussian Exponential Uniform
PNN 81.45% 78.30% 50.15%
LSVM 74.35% 72.55% 49.85%

Table 1. Accuracy of PNN and LSVM with different distributions

From the simulations conducted above, both PNN and LSVM are shown to have particular
strengths and weaknesses. PNN outperforms LSVM when the separation is large and feature
vector dimension sizeissmall. PNN fails with large feature vector dimension sizes, while
LSVM exhibits continued improvement in accuracy with increasingly large dimension sizes.
PNN and LSVM are two specific algorithms examined here, so the conclusion should not be
generalized to all support vector machines and neural networks. Accuracy is expected to vary
depending on the robustness of each algorithm.

Question 3

This question investigates applying the methods of Parzen windows, K-neares neighbors, and
nearest neighbor to classification.

Parzen Windows

Parzen windows is a nonparametric density estimation technique that can be applied to
classification. Using a given window function, this technique approximates the distribution of a
training set using a window centered at a desired point X, to compute and sum the contribution

from each point of the training data set. Applied to classification, atest point is labeled by using
the window function to compute a weighted mean of the contribution from the training pointsin
each of the classes. Thetest point is labeled to be from the class producing the maximum
weighted mean While the choice of a window function isimportant, the choice of a sensible
window size/side-length is crucial to accurate density estimation and classification. A small
window length may lead to spiky behavior in the density estimate while an excessively large
window length may average out the details of the data’ s underlying distribution. To simulate the
effect of window length on the density estimate, the following approach was taken:

. Generate M=1000 samples from a univariate Gaussian distribution X ~ N(0.5, 1)

Use agiven Gaussian window of length h

Visualize the density estimate as a function of h and x using mesh( )

Compute the mean squared error (M SE) of the density estimate for each window size h
using the known underlying Gaussian distribution

Repeat procedure with data from a uniform distribution X ~U (0, 1)
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Figure 7: Dengity estimate as a function of window length for Gaussian data.

As can be observed from the first subplot, tiny window length results in spiky behavior of the
density estimate while alarge window size produces excessive averaging. The subplot with the

MSE in fact confirms that optimal density estimation for this Gaussian data is achieved with
window size h=0.295.

Figure 8 shows the density estimate of a data set generated from the uniform distribution. As can
be observed, with alarge window size, the density estimate starts to appear Gaussian (partly
because the window function is Gaussian). The minimum M SE occurs with window size
h=0.065. It isinteresting to note that perhaps using a rectangular window function would result



in a better density estimate for the uniform case. If the underlying distribution is known, perhaps
awindow function of the same shape as the true underlying probability density function would
produce the best density estimate (with an appropriate window size). But in redlity, the
underlying distribution is complicated and rarely known, thus a generic Gaussian window
function is commonly used.
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Figure 8: Density estimate as a function of window length for uniformly distributed data.

Nearest Neighbor_and K-Nearest Neighbor

Nearest neighbor and K-nearest neighbor approaches arerelatively simple methods used for
classification Using aset of training data, the nearest neighbor approach classifies atest point to
be from the class of the nearest training data point. The K-nearest neighbor approach examines
K training data neighbors surrounding a test point, and classifies the test point to be from the




class who has more points closer to the testing point. Figure 9 illustrates the K-nearest neighbor
technique. Of the five training points closest to the square testing point, three are from the blue
class and two from the red class, therefore the testing point is labeled to be from the blue class.
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Figure 9: lllustration of K-Nearest Neighbor with K =5

As before, to evaluate and compare the performance of Parzen windows, nearest neighbor and K-
nearest neighbors, several ssmulations were performed to assess: (1) performance as a function of
separation between classes, (2) performance as a function of feature vector dimension size, and

(3) performance as a function of number of samples.

Case 1: Separation
Recall that m, =m, + D. To evaluate performance as a function of separation between classes,

D was varied from 0 to 4 while the feature vector size was kept at N = 2 and the number of

samples for each class was1000. The window side-length for Parzen windowsish =0.3. The
number of neighbors for K-nearest neighborsisset at K = 7.
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From Figure 10, it can be observed the accuracy curve for Parzen windows amost exactly
overlaps the curve for nearest neighbors. K-nearest neighbors method produces consistently
better accuracy at all separations.

Case 2: Feature vector dimension size

To evaluate performance as a function of separation between classes, feature vector dimension
size N was varied, while the separation was set at D = 1.5 and the number of samples for each
class was 1000 (half used as training data, remaining half used as testing data). The window
side-lengthfor Parzen windows is h = 0.3. The number of neighbors for K-nearest neighbors is
setat K =7. Again, K-nearest neighbors has consistently higher accuracy as feature vector
dimension size increases. Note that increasing the dimension size does not result in a significant
increase in accuracy for nearest neighbor or K-nearest neighbor. On the other hand, increasing
the dimension size results in a decrease in accuracy for the Parzen windows methods —at N > 11,
accuracy plummetsto zero percent. This can be explained by looking at the Gaussian window
function:

P
i (W)= @y )N Te ?
For N very large, the constant in front of the exponentlal becomes too small to be represented as

atype double in Matlab — it is rounded to zero. Therefore j (a) from class 1 isequal to j ()
from class 2 — all are equal to zero. The script for Parzen Windows is coded to not assign a class

when this occurs, resulting in zero accuracy. This suggests a crucial point when working with
Parzen windows: with very large feature vector dimension sizes, rounding error becomes a key
issue.
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Case 3: Data sample size

To evaluate performance as a function of data sample size, the number of samples M for each
class was varied while the separation was set at D = 1.5 and the feature vector dimension size
was4. Note that half of the samplesis used for training and the rest for testing. The window
side-length for Parzen windows ish = 0.3. The number of neighbors for K-nearest neighbors is
st at K =7. Again, K-nearest neighbors outperforms the two other methods which overlap
almost exactly with each other. Increasing sample size does not appear to increase performance
for any of these three methods.
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Figure 12: Performance as a function of data sample size.

For the ssimulations conducted to examine Parzen windows, nearest neighbor, and K-nearest
neighbors, K-nearest neighbors method has been shown to possess the highest accuracy. The
performance of Parzen windows is almost exactly the same as that of nearest neighbor in almost
all cases examined here. It is expected thet window size and window length will significantly
change the performance of Parzen windows classification depending on the circumstance.
Similarly, the value for K may also be expected to alter the accuracy of K-nearest neighbors
method depending on the situation.
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% Question 1 %
98BBBB88N

clc;

close all;

clear all;

% di fvec=0: 0. 1: 4;
% Nvec=[ 2: 2: 50 60:10: 100];
Mrec=[ 100: 100: 10000] ;

ite=l ength(Mec);

Cl=zeros(1l,ite);
C2=C1;

for

iii=1lite

%li f =di fvec(iii); N=4; M=10000;
UN=Nvec(iii); dif=1.5; M=10000;
MeMvec(iii); dif=1.5; N=4;

NED I\/EAN AND VARI ANCE

oON/8/8/8/8/08 0

% DATA IS Il D HERE I\/UST CO?RELATE LATER

mul=[ 1: N/ 2;

sigmal=sqrt([1:N]);

% Separate data by adjusting mean and vari ance
mu2=rul+di f ;

si gma2=si gmal;

% di agonal of covariance of X fromclass 1
covXl=di ag([si gml."2]");
% di agonal of covariance of X fromclass 2
covX2=di ag([ si gma2."2]");

x1l=zeros(M N); x2=zeros(M N);

for ii=1:N
x1(:,ii)=randonm(' normal ', mul(ii),sigmal(ii),[M1]);
x2(:,ii)=random(' normal"',mu2(ii),sigma2(ii),[M1])

end

% GENERATI NG POSI TI VE DEFI NI TE MATRI X TO CORRELATE DATA
c=zeros(1,N); c(1)=1;

r=ones(1, N);

P=t ceplitz(c,r);

Port h=orth(P); % ort hogonal i ze P

D=di ag([1: N]); % ei genval ues al ong t he di agonal

E=i nv( Porth)*D*Port h;

% generating correl ated feature vectors
y1=x1*E;

y2=x2*E;

covYl=E*covX1*E';



covY2=E*covX2*E';

% Cal cul ati ng nmeans of Y1, Y2, correlated data for classes 1 and 2
muYl=nean(yl);

muY2=mean(y2);

Sw=(yl-repmat (muY1l, M 1)) *(yl-repmat (nmuY1l, M 1)) +(y2-

repmat (nmuY2, M 1))"' *(y2-repmat (nuY2, M 1)) ;

end

W80
%with Sw %
BB

w=i nv(Sw) * (([ muY1l-nuY2])"');
W_S=W,

y=[yl;y2];
%=repmat (W ,2*M 1) . *y;
b=y*w;

% For univariate Gaussian with same E, threshold wO is m dway between
% the two projected neans
wo=(wW *nuYl +w *rmuY2')/ 2;

i nd1=find(b(1: M >w0); %class 1

i nd2=fi nd( b( M+1: end) <w0) ; % cl ass 2

TC=l engt h(i nd1) +l engt h(i nd2); % true classifications
FC=2* M TC,

TD_FD_i nv=[ TC F(]
C1(iii)=[ TC/ 2/ M100];

988888888880

% wi t hout Sw %
W88/

Sw=eye(N);

w=i nv(Sw) *(([muYl-muY2])');

y=[yl:y2];
Y%b=repmat (W ,2*M 1).*y;
b=y*w;

% For univariate Gaussian with same E, threshold wO is m dway between
% the two projected neans
wo=(w *nmuYl' +w *nmuY2')/ 2;

i nd1=find(b(1: M >w0); %class 1

i nd2=f i nd( b( Mt1: end) <w0) ; % class 2

TC=l engt h(i nd1) +l engt h(i nd2); %true classifications
FC=2* M TC,

TD_FD_i den=[ TC F(]
c2(iii)=[TC 2/ M100] ;



% figure

% plot(difvec,CL,"rx-","linewidth',2,' MarkerSi ze',6); hold on
% pl ot (di fvec, C2,"'go-","linewidth',2,' MarkerSi ze', 6);

% yl abel (* Percent Correct Classification');

% x| abel (' Separation of Data');

%title(' Performance as a function of data separation');

% | egend(' \omega™*','\onega_I|")

% figure
% pl ot (Nvec, CL,"rx-","linewidth',6 2,' MarkerSi ze',6); hold on
% pl ot (Nvec, C2,"'go-"',"'linewidth',6 2,' MarkerSi ze', 6);

% yl abel (" Percent Correct Cl assification');

% x| abel (' Feature Vector Dinmension Size (N)');

%title(' Performance as a function of feature vector dinension size');
% | egend(' \omega™*','\onmega_I|")

figure
pl ot (Mvec,Cl, ' rx-',"'linewidth',2,' MarkerSi ze',6); hold on
pl ot (Mvec, C2,"'go-',"'linewidth',2,' MarkerSi ze', 6);

yl abel (' Percent Correct Classification');

x| abel (" Nunber of Samples (M');

title(' Performance as a function of data sanple size');
| egend(' \ onega™*',"\onmega_l|")

9BBBBBE8
% Question 2 %
98888888880

clear all;close all;clc

%li f vec=0: 0. 1: 4;

Nvec=[ 1: 1: 30] ;

%wWec=[ 100: 100: 1000 1500: 500: 30007 ;
i te=l engt h(Nvec);

Cl=zeros(1l,ite);
C2=C1;

for iii=l:ite

%li f =di fvec(iii); N=4; M=2000;
N=Nvec(iii); dif=1.5; M=2000;
%VEMec(iii); dif=1.5; N=4;

[yl y2 nmuY1l nmuY2 covYl covY2] =gen_Ngaussi an(N, M di f);

% half of the data is for training, rest is for testing
tri=yl(1:M2,:); tr2=y2(1:M2,:);
tel=yl(M 2+1l:end,:); te2=y2(M2+1l:end,:);

9B
% SVM %
9B

A=[trl; tr2];
I en=l engt h( A);



D=eye(l en);

D(len/2:end,:)=D(len/2:end,:)*-1,;

nu = 1/size(A 1); tol = le-5; maxlter = 100; al pha = 1.9/ nu;

perturb = 0; normalize = O;

[iter, optCond, time, w, gamm] = |svm(A, D nu,tol, maxlter, al pha,
perturb, normalize);

% w and gamma are used to classify data points

res_tr=D*( A*w gamm) >0; % testing on training data

TD_FD svnmlr=[sum(res_tr) len-sumres_tr)];

% testing on non-training data

A=[tel; te2];

res_t e=D* ( A*w ganmma) >0; %testing on training data
TD_FD_svnife=[ sum(res_te) len-sum(res_te)];

9B

% ANN %

9B

Ptr = [trl; tr2]";

I en=length(trl);

Tc = [ones(1,len) 2*ones(1,len)];

T = ind2vec(Tc);
spread = 1;
net = newpnn(Ptr, T, spread);

% testing on training data

A = simnet,Ptr);

Ac_tr = vec2ind(A);

TD=[ sun(Ac_tr(1:1en)==1)+sunm(Ac_tr (Il en+l: end)==2)];
TD_FD_annTr=[ TD 2*| en-TD];

% testing on data

Pte = [tel; te2]"';

A = simnet, Pte);

Ac_te = vec2ind(A);

TD=[ sum(Ac_te(1l:1en)==1)+sumAc_te(len+l: end)==2)];
TD_FD_annTe=[ TD 2*l en-TD];

Cl(iii)=TD_FD svmre(1);
C2(iii)=TD_FD _annTe(1);

CL(iii)=Cl(iii)/M100;
C2(iii)=C2(iii)/M100;

end

% figure

% plot(difvec,C2,"rx-","linewidth',2,' MarkerSi ze',6); hold on
% pl ot (di fvec,CL,"go-","linewidth',2,' MarkerSi ze', 6);

% yl abel (' Percent Correct Classification');

% x| abel (' Separation of Data');

%title('Performance as a function of data separation');
% | egend(' PNN' , ' LSVM )

figure
pl ot (Nvec, C2,"'rx-',"'linewidth',2,' MarkerSi ze',6); hold on
pl ot (Nvec, Cl,"'go-',"'linewidth', 2,' MarkerSi ze', 6);



yl abel (' Percent Correct Classification');

x| abel (' Feature Vector Dinmension Size (N');

title(' Performance as a function of feature vector dinmension size');
l egend(' PNN' , ' LSVM)

% figure
% plot (Mec,C2,"'rx-","linewidth', 2,' MarkerSi ze',6); hold on
% pl ot (Mvec, C1l,"'go-',"'linewidth', 2,' MarkerSi ze', 6);

% yl abel (' Percent Correct Classification');

% x| abel (" Number of Sanples (M');

%title(' Performance as a function of data sanple size');
% | egend(' PNN' , ' LSVM )

9BBBBB8888
% Question 3 %
9888888888

% cl assification using PW NN, KNN
clear all;close all;clc

di fvec=0:0. 1: 4;
Nvec=[ 1: 1: 30] ;
Msec=[ 100: 100: 2000] ;

ite=l ength(Mec);

Cl=zeros(1l,ite);
C2=C1,;

C3=C1;

hi =0. 3;

k=7;

for iii=1:ite
%li f =di fvec(iii); N=4; M=1000
9N=Nvec(iii); dif=1.5; M=1000;
MeEMvec(iii); dif=1.5; N=4;
[yl y2 nmuYl muY2 covYl covY2] =gen_Ngaussi an2(N, M di f);
% hal f of the data is for training, rest is for testing
trl=y1(1: M2,:); tr2=y2(1:M2,:);
tel=yl(M 2+1:end,:); te2=y2(M 2+1:end,:)
| en=M 2;
YRBB8BRE888880
% Parzen W ndows %

W

classl=zeros(len,1);
cl ass2=cl ass1,;

for ii=1l:len
% for testing data fromclass 1



post 1=1/ ((M 2)*(hi *N)) *sum Gaussi anW n(N, (repmat (tel(ii,:),M2,1)-

tr1)/hi));
post 2=1/ ((M 2) *(hi *N)) *sum( Gaussi anW n(N, (repmat (tel(ii,:),M2,1)-
tr2)/hi));
i f postl>post2 % p(wl| x) >p(w2| x)
classl(ii)=1;
end

% for testing data fromclass 2
post 1=1/ ((M 2) *(hi *N)) *sum Gaussi anW n(N, (repmat (te2(ii,:),M2,1)-

tr1)/hi));
post 2=1/ ((M 2) *(hi *N)) *sum Gaussi anW n(N, (repmat (te2(ii,:),M2,1)-
tr2)/hi));
i f postl<post?2 % p(wl| x) <p(w2| x)
class2(ii)=1;
end
end

TD=sum(cl assl) +sun( cl ass2);
FD=M TD;

TD_FD=[ TD FD]
Cl(iii)=TD_FD(1)/M100;

9888888888880
% Near est Nei ghbor %
9888888888880

classl=zeros(M 2,1);
cl ass2=cl ass1;

for ii=1:M2 % for each testing data point
s=tel(ii,:);
dl=sqrt(sum((trl-repmat(s,M2,1))."2,2)); % di stance from each

point intrl
d2=sqrt (sum((tr2-repmat (s, M2,1))."2,2)); % di stance from each
point in tr2

dlm n=m n(dl); % cl osest point in trl
d2m n=m n(d2); % cl osest point intr2

%if closest to a point in trl, then classify as fromclass 1
% 0 nmeans belonging to other class 1, 1 nmeans belonging to correct
cl ass
if dim n<d2min
classl1(ii)=1;
el se
classl(ii)=0;
end

% repeat for each testing data point in class 2

s=te2(ii,:);

dl=sqrt(sum((trl-repmat(s,M2,1))."2,2)); % di stance from each
point intrl

d2=sqrt (sum((tr2-repmat (s, M2,1))."2,2)); % di stance from each
point in tr2



dlm n=m n(dl); % cl osest
d2m n=m n(d2); % cl osest

%if closest to a point

i f dim n<d2min
class2(ii)=0;
el se
class2(ii)=1;
end

end

TD=sum(cl assl) +sun(cl ass?2);

FD=M TD;

[true_fal se_nn]=[TD FD]

C2(iii)=true_false_nn(1)/M100;

BB
%K<- Near est Nei ghbor %
Y88888/8/88888888888880
classl=zeros(M 2,1);

cl ass2=cl ass1;

for ii=1: M2 % for each testing data point

poi nt

poi nt

s=tel(ii,:);

di=sqrt(sum((trl-repmat(s,M2,1))."2,2));

intrl

d2=sqrt(sum((tr2-repmat(s,M2,1))."2,2));

intr2

dl=[dl ones(M2,1)];
d2=[d2 -ones(M 2,1)];
% sorting distances
d=[d1; d2];
ds=sortrows(d);

dsk=ds(1:k, 2);

val =sum( dsk) ; % positive neans cl assl has

means ot her

poi nt

poi nt

i f val >0
classl(ii)=1;

el se
classl(ii)=0;

end

s=te2(ii,:);

dl=sqrt(sum(trl-repmat(s,M2,1))."2,2));

intrl

d2=sqrt(sum (tr2-repmat(s,M2,1)).72,2));

intr2

d1=[dl ones(M 2,1)];
d2=[d2 -ones(M 2,1)];

% sortrows only

then classify as fromclass 1

% di stance from each

% di stance from each

% assigning 1 to denote fromclass 1
% assigning -1 to denote fromclass 2

sorts the first colum

nore contribution, neg

% di stance from each

% di stance from each

% assigning 1 to denote fromclass 1
% assigning -1 to denote fromclass 2



% sorting distances
d=[d1; d2];
ds=sortrows(d); % sortrows only sorts the first columm

dsk=ds(1:k, 2);

val =sum( dsk) ; % positive nmeans classl has nore contribution, neg
means ot her
if val >0
class2(ii)=0;
el se
class2(ii)=1,;
end

end

TD=sum(cl assl) +sun( cl ass2);
FD=M TD;

[true_fal se_knn]=[ TD FD]
C3(iii)=true_fal se_knn(1l)/M100;

end

% figure

% plot(difvec,CL,'"rx-","linewidth',2,' MarkerSi ze',8); hold on
% pl ot (di fvec,C2,"'go-","linewidth', 2,' MarkerSi ze', 6);

% plot(difvec,C3,"ns-","linewidth', 2,' MarkerSi ze', 6);

% yl abel (" Percent Correct Cl assification');

% x| abel (" Separati on of Data');

%title(' Performance as a function of data separation');

% | egend(' Parzen W ndows',' Nearest Nei ghbor',' K-Nearest Nei ghbors')

% figure

% pl ot (Nvec, CL,'rx-"',"linewidth',6 2,' MarkerSi ze',8); hold on
% pl ot (Nvec, C2,"'go-',"'linewi dth',6 2,' MarkerSi ze', 6);

% pl ot (Nvec, C3,"'nms-","'linewidth',6 2,' MarkerSi ze', 6);

% yl abel (" Percent Correct Cl assification');

% x| abel (' Feature Vector Dinmension Size (N)');

%title(' Performance as a function of feature vector dinmension size');
% | egend(' Parzen W ndows',' Nearest Nei ghbor','K-Nearest Nei ghbors')

figure

pl ot (Mvec,Cl, ' rx-',"'linewidth',2,' MarkerSi ze',6); hold on
pl ot (Mvec, C2,"'go-',"'linewidth',2,' MarkerSi ze', 6);

pl ot (Mvec, C3, "' nms-',"'linewidth',2,' MarkerSi ze', 6);

yl abel (' Percent Correct Classification');

x| abel (' Nunber of Sanples (M');

title(' Performance as a function of data sanple size');

| egend(' Parzen W ndows', ' Near est Nei ghbor','K-Nearest Nei ghbors')






