
Question 1
Parametric methods compute the parametric decision boundaries to approximate the true
decision boundaries between classes. One common parametric method involves the use of the
Fisher linear discriminant to find a projection such that the projected data can best be separated.
The Fisher linear discriminant for two classes with d1 samples from class 1 and the remaining
samples from class 2 is defined as follows:

()
ωω
ωω

ω vv
vv

v

W
T

B
T

S
S

SS

mm
J =

+

−
= 2

2
2

1

2
21

~~
~~

where ∑
=

⋅=
1

11
1

1~
d

i
iy

d
m ω

v
, ∑

+=

⋅=
d

di
iy

d
m

12
2

1

1~ ω
v

are the means of the projected data

()∑
=

−⋅=
1

1
1

2
1

~~ d

i
i myS ωv , ()∑

+=

−⋅=
d

di
i myS

1
2

2
2

1

~~
ω
v

 are the variances

 ()()ωω vvvvvv TTT
B mmmmS 2121 −−= is the between class scatter

 and () ()
2

1
2

2

1
1

2

1

1 ~~










−⋅+










−⋅= ∑∑

+==

d

di
i

d

i
iw mymyS

ω
ω

ω
ω

v
v

v
v

is the within class scatter.

Maximizing the Fisher linear discriminant yields the optimal projection ()21
1 mmSw

vvv
−= −∗ω .

Intuitively, this optimization problem is computing the projection that maximizes the ratio
between the separation of the means of the projected data and the within class scatter of the
projected data – producing a projection that separates the projected means while reducing the
scatter/variance of the projected data.

The goal of this question is to evaluate the performance of the classifier using ∗ωv as the
projection versus using ()21 mmI

vvv −=ω . The following procedure was followed in writing the
Matlab algorithm:

• Generate correlated Gaussian data from class 1 and class 2. Data from class 1 and class 2
have the same covariance (i.e. 21 ∑=∑), but the means are different (i.e. ∆+= 12 mm vv to
produce separation between the classes. The mean of class 1 is set as

{ }2,,5.1,1,5.01
Nm Kv = .

• Compute the optimal projection ()21
1 mmSw

vvv
−= −∗ω .

• Apply the projection to the data: by
vvv =∗ω .

• Find the threshold to classify the data:
2

~~
21

0
mm −

=ω for Gaussian data from two classes

with equal covariance matrices.
• Classify the ith data point as from class 1 if 0ω>ib , else from class 2. Count number of

true and false classifications.
• Repeat procedure for ()21 mmI

vvv −=ω on same data.
• Compare the performance of classification using ∗ωv versus using Iωv .

To evaluate the performance of the two different methods, several simulations were performed to
assess: (1) performance as a function of separation between classes, (2) performance as a
function of feature vector dimension size, and (3) performance as a function of number of
samples.

Case 1: Separation
Recall that ∆+= 12 mm vv . To evaluate performance as a function of separation between classes,
∆ was varied from 0 to 4 while the feature vector size was kept at N = 4 and the number of
samples for each class was 10000. Figure 1 shows the results, revealing that the method
employing ∗ωv outperforms the method using Iωv at all separations. It is interesting to note that at
very small and very large separations the performance of both methods are somewhat similar –
but at intermediate separations, method ∗ωv is superior in accuracy to method Iωv by
approximately 10%. This is to be expected, as when the data has no separation, no method will
achieve more than chance accuracy, no matter how good the algorithm is; when there is a very
large separation, any decent method should produce good classification.

Figure 1: Performance as a function of data separation.

Case 2: Feature vector dimension size
To evaluate performance as a function of separation between classes feature vector dimension
size N was varied while the separation was set at ∆ = 1.5 and the number of samples for each
class was 10000. Figure 2 depicts the results, again showing that the performance of ∗ωv is
superior to that of method Iωv by about 10% in accuracy at all feature vector dimension sizes. An
increase in dimension size when N is small results in a large increase in accuracy for both
algorithms. On the other hand, an additional increase in dimension size when N is already large
only results in minimal improvement in accuracy for both algorithms.

Figure 2: Performance as a function of feature vector dimension size.

Case 3: Data sample size
To evaluate performance as a function of data sample size, number of samples M for each class
was varied with the separation set at ∆ = 1.5 and the feature vector dimension equal to 4. Figure
3 shows the results. It is interesting to note that while method ∗ωv outperforms Iωv at all sample
sizes, neither method exhibited an increase in accuracy as sample size increases.

Figure 3: Performance as a function of data sample size .

Discussion of Results
In all the simulations conducted above, method ∗ωv achieved superior performance over Iωv .
While the simulations by no means cover all possible cases, the results do reveal with a large
degree of certainty that ∗ωv is superior – possibly explainable by theory. Recall that the Fisher

discriminant is ()
ωω
ωω

ω vv
vv

v

W
T

B
T

S
S

SS

mm
J =

+

−
= 2

2
2

1

2
21

~~
~~

. Maximizing ()ωvJ finds the projection ∗ωv that

increases the separation between the means of the projected data as well as reducing the within-
class scatter of the data to produce minimal overlap between classes. The denominator of the
Fisher discriminant not only serves to make ()ωvJ independent of ω

v
 but also regulates the

within-class scatter. On the other hand, the projection ()21 mmI
vvv −=ω does not account for

within-class scatter – resulting in a sub-optimal projection that while separating the means of the
projected data, does not seek to optimize the variance/scatter of the projected data. Therefore,
method ∗ωv can be expected to achieve superior performance over method Iωv .

Question 2
The performance of a neural network method was examined and compared to the performance of
a support vector machine method for classification.

The neural network method used in this report is part of the Neural Network Toolbox in Matlab
(The Mathworks). Specifically, the following functionalities were used for classification.

• net = newpnn(P, T, SPREAD): Implements a probabilistic neural network (PNN; a type
of radial basis network) that is suitable for classification. The newpnn function creates a
two layer network by calling on a variety of functions from the Neural Network Toolbox.
The first layer has radbas() neurons, and calculates the weighted inputs with dist() and
its net input with netprod(). The second layer has compet() neurons, and calculates its
weighted input with dotprod() and its net inputs with netsum(). The main function
newpnn() accepts an input matrix P of input vectors and an input matrix T of target class
vectors, and returns a new probabilistic network.

• a = sim(net,P):Uses the new neural network designed by newpnn() to classify data
matrix P.

To evaluate the performance of this probabilistic neural network, a set of training data was used
to design a new neural net, and a separate set testing data was used to compute the accuracy of
the algorithm.

The support vector machine (SVM) algorithm utilized in this report is authored by Mangasarian
and Musicant in the Department of Computer Sciences at the University of Wisconsin. The
algorithm is named Lagrangian Support Vector Machines (LSVM) and is freely available online
at http://www.cs.wisc.edu/dmi/lsvm/. The technical report detailing LSVM is also available
online from ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-06.ps. Mangasarian and Musicant
developed an implicit Lagrangian for the dual of a simple reformulation of the standard quadratic
program of a linear support vector machine, leading to the minimization of an unconstrained
differentiable convex function with dimensionality equal to the number of classified points. The
minimization problem is solved by a linearly convergent Lagrangian support vector machine
algorithm, requiring the inversion at the outset of a single matrix with the order of dimensionality

equal to the original input space plus one. Classification was performed by training the LSVM –
its accuracy was assessed with a separate set of testing data.

As before, to evaluate and compare the performance of LSVM and PNN, several experiments
were performed: (1) performance as a function of separation between classes, (2) performance as
a function of feature vector dimension size, (3) performance as a function of number of samples,
and (4) performance with different distributions. Note that cases (1)-(3) utilized a Gaussian
distribution.

Case 1: Separation
Recall that ∆+= 12 mm vv . To evaluate performance as a function of separation between classes,
∆ was varied from 0 to 4 while the feature vector size was kept at N = 4 and the number of
samples for each class was 2000. Note that half the samples from each class was utilized as
training data, and the remaining half used as testing data. Figure 4 shows the results of this
simulation, revealing that while LSVM achieves superior accuracy with small separations (<
0.6), PNN quickly overtakes LSVM in accuracy at approximately ∆ = 0.6. While PNN almost
achieves perfect accuracy at ∆ = 4, LSVM only has an accuracy of less than 90%.

Figure 4: Performance as a function of data separation.

Case 2: Feature vector dimension size
To evaluate performance as a function of separation between classes, feature vector dimension
size N was varied while the separation was set at ∆ = 1.5 and the number of samples for each
class was 2000 (half used as training data, remaining half used as testing data). Figure 5 depicts
the results, showing that while PNN achieves superior performance at low dimension sizes (<
12), it fails disastrously at higher dimension sizes and only achieves chance accuracy. LSVM,
on the other hand, steadily improves in accuracy as feature vector dimension size increases.

Figure 5: Performance as a function of feature vector dimension size.

Case 3: Data sample size
To evaluate performance as a function of data sample size, the number of samples M for each
class was varied while the separation was set at ∆ = 1.5 and the feature vector dimension size
was 4. Note that half of the samples was used for training and the rest for testing. Figure 3
shows the results, revealing that PNN consistently achieves better accuracy than LSVM at the
given separation and dimension size for all sample sizes, although increasing the sample size
past 1000 does not improve accuracy for either method.

Figure 6: Performance as a function of data sample size .

Case 4: Distribution
To evaluate performance of LSVM and PNN for data with different distributions, correlated
Gaussian, exponential, and uniform random data were generated. Number of samples M for
each class was 2000; the separation of the means was set at ∆ = 1.5; and feature vector
dimension size was 4. Table 1 tallies the results, showing that PNN achieved superior accuracy
for the Gaussian and exponential data. Both methods achieved chance accuracy for the
uniformly distributed data, due to the lack of separation.

 Gaussian Exponential Uniform
PNN 81.45% 78.30% 50.15%

LSVM 74.35% 72.55% 49.85%
Table 1: Accuracy of PNN and LSVM with different distributions

From the simulations conducted above, both PNN and LSVM are shown to have particular
strengths and weaknesses. PNN outperforms LSVM when the separation is large and feature
vector dimension size is small. PNN fails with large feature vector dimension sizes, while
LSVM exhibits continued improvement in accuracy with increasingly large dimension sizes.
PNN and LSVM are two specific algorithms examined here, so the conclusion should not be
generalized to all support vector machines and neural networks. Accuracy is expected to vary
depending on the robustness of each algorithm.

Question 3
This question investigates applying the methods of Parzen windows, K-nearest neighbors, and
nearest neighbor to classification.

Parzen Windows
Parzen windows is a nonparametric density estimation technique that can be applied to
classification. Using a given window function, this technique approximates the distribution of a
training set using a window centered at a desired point 0xv to compute and sum the contribution
from each point of the training data set. Applied to classification, a test point is labeled by using
the window function to compute a weighted mean of the contribution from the training points in
each of the classes. The test point is labeled to be from the class producing the maximum
weighted mean. While the choice of a window function is important, the choice of a sensible
window size/side-length is crucial to accurate density estimation and classification. A small
window length may lead to spiky behavior in the density estimate while an excessively large
window length may average out the details of the data’s underlying distribution. To simulate the
effect of window length on the density estimate, the following approach was taken:

• Generate M=1000 samples from a univariate Gaussian distribution ()1,5.0~ NX
• Use a given Gaussian window of length h
• Visualize the density estimate as a function of h and x using mesh()
• Compute the mean squared error (MSE) of the density estimate for each window size h

using the known underlying Gaussian distribution
• Repeat procedure with data from a uniform distribution ()1,0~ UX

Figure 7: Density estimate as a function of window length for Gaussian data.

As can be observed from the first subplot, tiny window length results in spiky behavior of the
density estimate while a large window size produces excessive averaging. The subplot with the
MSE in fact confirms that optimal density estimation for this Gaussian data is achieved with
window size h=0.295.

Figure 8 shows the density estimate of a data set generated from the uniform distribution. As can
be observed, with a large window size, the density estimate starts to appear Gaussian (partly
because the window function is Gaussian). The minimum MSE occurs with window size
h=0.065. It is interesting to note that perhaps using a rectangular window function would result

in a better density estimate for the uniform case. If the underlying distribution is known, perhaps
a window function of the same shape as the true underlying probability density function would
produce the best density estimate (with an appropriate window size). But in reality, the
underlying distribution is complicated and rarely known, thus a generic Gaussian window
function is commonly used.

Figure 8: Density estimate as a function of window length for uniformly distributed data.

Nearest Neighbor and K-Nearest Neighbor
Nearest neighbor and K-nearest neighbor approaches are relatively simple methods used for
classification. Using a set of training data, the nearest neighbor approach classifies a test point to
be from the class of the nearest training data point. The K-nearest neighbor approach examines
K training data neighbors surrounding a test point, and classifies the test point to be from the

class who has more points closer to the testing point. Figure 9 illustrates the K-nearest neighbor
technique. Of the five training points closest to the square testing point, three are from the blue
class and two from the red class, therefore the testing point is labeled to be from the blue class.

Figure 9: Illustration of K-Nearest Neighbor with K = 5

As before, to evaluate and compare the performance of Parzen windows, nearest neighbor and K-
nearest neighbors, several simulations were performed to assess: (1) performance as a function of
separation between classes, (2) performance as a function of feature vector dimension size, and
(3) performance as a function of number of samples.

Case 1: Separation
Recall that ∆+= 12 mm vv . To evaluate performance as a function of separation between classes,
∆ was varied from 0 to 4 while the feature vector size was kept at N = 2 and the number of
samples for each class was 1000. The window side- length for Parzen windows is h = 0.3. The
number of neighbors for K-nearest neighbors is set at K = 7.

Figure 10: Performance as a function of data separation.

From Figure 10, it can be observed the accuracy curve for Parzen windows almost exactly
overlaps the curve for nearest neighbors. K-nearest neighbors method produces consistently
better accuracy at all separations.

Case 2: Feature vector dimension size
To evaluate performance as a function of separation between classes, feature vector dimension
size N was varied, while the separation was set at ∆ = 1.5 and the number of samples for each
class was 1000 (half used as training data, remaining half used as testing data). The window
side- length for Parzen windows is h = 0.3. The number of neighbors for K-nearest neighbors is
set at K = 7. Again, K-nearest neighbors has consistently higher accuracy as feature vector
dimension size increases. Note that increasing the dimension size does not result in a significant
increase in accuracy for nearest neighbor or K-nearest neighbor. On the other hand, increasing
the dimension size results in a decrease in accuracy for the Parzen windows methods – at N > 11,
accuracy plummets to zero percent. This can be explained by looking at the Gaussian window
function:

()
()

2
2/

2

2
1 u

N eu

v

v
−

=
π

ϕ

For N very large, the constant in front of the exponential becomes too small to be represented as
a type double in Matlab – it is rounded to zero. Therefore ()uvϕ from class 1 is equal to ()uvϕ
from class 2 – all are equal to zero. The script for Parzen Windows is coded to not assign a class
when this occurs, resulting in zero accuracy. This suggests a crucial point when working with
Parzen windows: with very large feature vector dimension sizes, rounding error becomes a key
issue.

Figure 11: Performance as a function of feature vector dimension size.

Case 3: Data sample size
To evaluate performance as a function of data sample size, the number of samples M for each
class was varied while the separation was set at ∆ = 1.5 and the feature vector dimension size
was 4. Note that half of the samples is used for training and the rest for testing. The window
side- length for Parzen windows is h = 0.3. The number of neighbors for K-nearest neighbors is
set at K = 7. Again, K-nearest neighbors outperforms the two other methods which overlap
almost exactly with each other. Increasing sample size does not appear to increase performance
for any of these three methods.

Figure 12: Performance as a function of data sample size .

For the simulations conducted to examine Parzen windows, nearest neighbor, and K-nearest
neighbors, K-nearest neighbors method has been shown to possess the highest accuracy. The
performance of Parzen windows is almost exactly the same as that of nearest neighbor in almost
all cases examined here. It is expected that window size and window length will significantly
change the performance of Parzen windows classification depending on the circumstance.
Similarly, the value for K may also be expected to alter the accuracy of K-nearest neighbors
method depending on the situation.

%%%%%%%%%%%%%%
% Question 1 %
%%%%%%%%%%%%%%
clc; close all;
clear all;

% difvec=0:0.1:4;
% Nvec=[2:2:50 60:10:100];
Mvec=[100:100:10000];

ite=length(Mvec);

C1=zeros(1,ite);
C2=C1;

for iii=1:ite

 %dif=difvec(iii); N=4; M=10000;
 %N=Nvec(iii); dif=1.5; M=10000;
 M=Mvec(iii); dif=1.5; N=4;

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 % USER DEFINED MEAN AND VARIANCE %
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 % DATA IS IID HERE, MUST CORRELATE LATER
 mu1=[1:N]/2;
 sigma1=sqrt([1:N]);
 % Separate data by adjusting mean and variance
 mu2=mu1+dif;
 sigma2=sigma1;

 % diagonal of covariance of X from class 1
 covX1=diag([sigma1.^2]');
 % diagonal of covariance of X from class 2
 covX2=diag([sigma2.^2]');

 x1=zeros(M,N); x2=zeros(M,N);
 for ii=1:N
 x1(:,ii)=random('normal',mu1(ii),sigma1(ii),[M 1]);
 x2(:,ii)=random('normal',mu2(ii),sigma2(ii),[M 1]);
 end

 % GENERATING POSITIVE DEFINITE MATRIX TO CORRELATE DATA
 c=zeros(1,N); c(1)=1;
 r=ones(1,N);
 P=toeplitz(c,r);
 Porth=orth(P); % orthogonalize P
 D=diag([1:N]); % eigenvalues along the diagonal
 E=inv(Porth)*D*Porth;

 % generating correlated feature vectors
 y1=x1*E;
 y2=x2*E;

 covY1=E*covX1*E';

 covY2=E*covX2*E';

 % Calculating means of Y1, Y2, correlated data for classes 1 and 2
 muY1=mean(y1);
 muY2=mean(y2);

 Sw=(y1-repmat(muY1,M,1))'*(y1-repmat(muY1,M,1))+(y2-
repmat(muY2,M,1))'*(y2-repmat(muY2,M,1));

 %%%%%%%%%%%
 % with Sw %
 %%%%%%%%%%%

 w=inv(Sw)*(([muY1-muY2])');
 w_s=w;

 y=[y1;y2];
 %b=repmat(w',2*M,1).*y;
 b=y*w;

 % For univariate Gaussian with same E, threshold w0 is midway between
 % the two projected means
 w0=(w'*muY1'+w'*muY2')/2;

 ind1=find(b(1:M)>w0); % class 1
 ind2=find(b(M+1:end)<w0); % class 2

 TC=length(ind1)+length(ind2); % true classifications
 FC=2*M-TC;

 TD_FD_inv=[TC FC]
 C1(iii)=[TC/2/M*100];

 %%%%%%%%%%%%%%
 % without Sw %
 %%%%%%%%%%%%%%
 Sw=eye(N);
 w=inv(Sw)*(([muY1-muY2])');

 y=[y1;y2];
 %b=repmat(w',2*M,1).*y;
 b=y*w;

 % For univariate Gaussian with same E, threshold w0 is midway between
 % the two projected means
 w0=(w'*muY1'+w'*muY2')/2;

 ind1=find(b(1:M)>w0); % class 1
 ind2=find(b(M+1:end)<w0); % class 2

 TC=length(ind1)+length(ind2); % true classifications
 FC=2*M-TC;

 TD_FD_iden=[TC FC]
 C2(iii)=[TC/2/M*100];
end

% figure
% plot(difvec,C1,'rx-','linewidth',2,'MarkerSize',6); hold on
% plot(difvec,C2,'go-','linewidth',2,'MarkerSize',6);
% ylabel('Percent Correct Classification');
% xlabel('Separation of Data');
% title('Performance as a function of data separation');
% legend('\omega^*','\omega_I')

% figure
% plot(Nvec,C1,'rx-','linewidth',2,'MarkerSize',6); hold on
% plot(Nvec,C2,'go-','linewidth',2,'MarkerSize',6);
% ylabel('Percent Correct Classification');
% xlabel('Feature Vector Dimension Size (N)');
% title('Performance as a function of feature vector dimension size');
% legend('\omega^*','\omega_I')

figure
plot(Mvec,C1,'rx-','linewidth',2,'MarkerSize',6); hold on
plot(Mvec,C2,'go-','linewidth',2,'MarkerSize',6);
ylabel('Percent Correct Classification');
xlabel('Number of Samples (M)');
title('Performance as a function of data sample size');
legend('\omega^*','\omega_I')

%%%%%%%%%%%%%%
% Question 2 %
%%%%%%%%%%%%%%

clear all;close all;clc

%difvec=0:0.1:4;
Nvec=[1:1:30];
%Mvec=[100:100:1000 1500:500:3000];
ite=length(Nvec);

C1=zeros(1,ite);
C2=C1;

for iii=1:ite

 %dif=difvec(iii); N=4; M=2000;
 N=Nvec(iii); dif=1.5; M=2000;
 %M=Mvec(iii); dif=1.5; N=4;

 [y1 y2 muY1 muY2 covY1 covY2]=gen_Ngaussian(N,M,dif);

 % half of the data is for training, rest is for testing
 tr1=y1(1:M/2,:); tr2=y2(1:M/2,:);
 te1=y1(M/2+1:end,:); te2=y2(M/2+1:end,:);

 %%%%%%%
 % SVM %
 %%%%%%%

 A=[tr1; tr2];
 len=length(A);

 D=eye(len);
 D(len/2:end,:)=D(len/2:end,:)*-1;
 nu = 1/size(A,1); tol = 1e-5; maxIter = 100; alpha = 1.9/nu;
 perturb = 0; normalize = 0;
 [iter, optCond, time, w, gamma] = lsvm(A,D,nu,tol,maxIter,alpha, ...
 perturb,normalize);
 % w and gamma are used to classify data points
 res_tr=D*(A*w-gamma)>0; % testing on training data
 TD_FD_svmTr=[sum(res_tr) len-sum(res_tr)];

 % testing on non-training data
 A=[te1; te2];
 res_te=D*(A*w-gamma)>0; % testing on training data
 TD_FD_svmTe=[sum(res_te) len-sum(res_te)];

 %%%%%%%
 % ANN %
 %%%%%%%
 Ptr = [tr1; tr2]';
 len=length(tr1);
 Tc = [ones(1,len) 2*ones(1,len)];

 T = ind2vec(Tc);
 spread = 1;
 net = newpnn(Ptr,T,spread);

 % testing on training data
 A = sim(net,Ptr);
 Ac_tr = vec2ind(A);
 TD=[sum(Ac_tr(1:len)==1)+sum(Ac_tr(len+1:end)==2)];
 TD_FD_annTr=[TD 2*len-TD];

 % testing on data
 Pte = [te1; te2]';
 A = sim(net,Pte);
 Ac_te = vec2ind(A);
 TD=[sum(Ac_te(1:len)==1)+sum(Ac_te(len+1:end)==2)];
 TD_FD_annTe=[TD 2*len-TD];

 C1(iii)=TD_FD_svmTe(1);
 C2(iii)=TD_FD_annTe(1);

 C1(iii)=C1(iii)/M*100;
 C2(iii)=C2(iii)/M*100;
end

% figure
% plot(difvec,C2,'rx-','linewidth',2,'MarkerSize',6); hold on
% plot(difvec,C1,'go-','linewidth',2,'MarkerSize',6);
% ylabel('Percent Correct Classification');
% xlabel('Separation of Data');
% title('Performance as a function of data separation');
% legend('PNN','LSVM')

figure
plot(Nvec,C2,'rx-','linewidth',2,'MarkerSize',6); hold on
plot(Nvec,C1,'go-','linewidth',2,'MarkerSize',6);

ylabel('Percent Correct Classification');
xlabel('Feature Vector Dimension Size (N)');
title('Performance as a function of feature vector dimension size');
legend('PNN','LSVM')

% figure
% plot(Mvec,C2,'rx-','linewidth',2,'MarkerSize',6); hold on
% plot(Mvec,C1,'go-','linewidth',2,'MarkerSize',6);
% ylabel('Percent Correct Classification');
% xlabel('Number of Samples (M)');
% title('Performance as a function of data sample size');
% legend('PNN','LSVM')

%%%%%%%%%%%%%%
% Question 3 %
%%%%%%%%%%%%%%

% classification using PW, NN, KNN

clear all;close all;clc

difvec=0:0.1:4;
Nvec=[1:1:30];
Mvec=[100:100:2000];

ite=length(Mvec);

C1=zeros(1,ite);
C2=C1;
C3=C1;
hi=0.3;
k=7;

for iii=1:ite

 %dif=difvec(iii); N=4; M=1000;
 %N=Nvec(iii); dif=1.5; M=1000;
 M=Mvec(iii); dif=1.5; N=4;

 [y1 y2 muY1 muY2 covY1 covY2]=gen_Ngaussian2(N,M,dif);

 % half of the data is for training, rest is for testing
 tr1=y1(1:M/2,:); tr2=y2(1:M/2,:);
 te1=y1(M/2+1:end,:); te2=y2(M/2+1:end,:);

 len=M/2;

 %%%%%%%%%%%%%%%%%%
 % Parzen Windows %
 %%%%%%%%%%%%%%%%%%

 class1=zeros(len,1);
 class2=class1;

 for ii=1:len
 % for testing data from class 1

 post1=1/((M/2)*(hi^N))*sum(GaussianWin(N,(repmat(te1(ii,:),M/2,1)-
tr1)/hi));
 post2=1/((M/2)*(hi^N))*sum(GaussianWin(N,(repmat(te1(ii,:),M/2,1)-
tr2)/hi));
 if post1>post2 % p(w1|x)>p(w2|x)
 class1(ii)=1;
 end

 % for testing data from class 2
 post1=1/((M/2)*(hi^N))*sum(GaussianWin(N,(repmat(te2(ii,:),M/2,1)-
tr1)/hi));
 post2=1/((M/2)*(hi^N))*sum(GaussianWin(N,(repmat(te2(ii,:),M/2,1)-
tr2)/hi));
 if post1<post2 % p(w1|x)<p(w2|x)
 class2(ii)=1;
 end
 end

 TD=sum(class1)+sum(class2);
 FD=M-TD;
 TD_FD=[TD FD]
 C1(iii)=TD_FD(1)/M*100;

 %%%%%%%%%%%%%%%%%%%%
 % Nearest Neighbor %
 %%%%%%%%%%%%%%%%%%%%

 class1=zeros(M/2,1);
 class2=class1;

 for ii=1:M/2 % for each testing data point

 s=te1(ii,:);
 d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2)); % distance from each
point in tr1
 d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2)); % distance from each
point in tr2

 d1min=min(d1); % closest point in tr1
 d2min=min(d2); % closest point in tr2

 % if closest to a point in tr1, then classify as from class 1
 % 0 means belonging to other class 1, 1 means belonging to correct
class
 if d1min<d2min
 class1(ii)=1;
 else
 class1(ii)=0;
 end

 % repeat for each testing data point in class 2
 s=te2(ii,:);
 d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2)); % distance from each
point in tr1
 d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2)); % distance from each
point in tr2

 d1min=min(d1); % closest point in tr1
 d2min=min(d2); % closest point in tr2

 % if closest to a point in tr1, then classify as from class 1
 if d1min<d2min
 class2(ii)=0;
 else
 class2(ii)=1;
 end

 end

 TD=sum(class1)+sum(class2);
 FD=M-TD;

 [true_false_nn]=[TD FD]
 C2(iii)=true_false_nn(1)/M*100;

 %%%%%%%%%%%%%%%%%%%%%
 %K-Nearest Neighbor %
 %%%%%%%%%%%%%%%%%%%%%
 class1=zeros(M/2,1);
 class2=class1;

 for ii=1:M/2 % for each testing data point

 s=te1(ii,:);
 d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2)); % distance from each
point in tr1
 d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2)); % distance from each
point in tr2

 d1=[d1 ones(M/2,1)]; % assigning 1 to denote from class 1
 d2=[d2 -ones(M/2,1)]; % assigning -1 to denote from class 2
 % sorting distances
 d=[d1;d2];
 ds=sortrows(d); % sortrows only sorts the first column

 dsk=ds(1:k,2);

 val=sum(dsk); % positive means class1 has more contribution, neg
means other
 if val>0
 class1(ii)=1;
 else
 class1(ii)=0;
 end

 s=te2(ii,:);
 d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2)); % distance from each
point in tr1
 d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2)); % distance from each
point in tr2

 d1=[d1 ones(M/2,1)]; % assigning 1 to denote from class 1
 d2=[d2 -ones(M/2,1)]; % assigning -1 to denote from class 2

 % sorting distances
 d=[d1;d2];
 ds=sortrows(d); % sortrows only sorts the first column

 dsk=ds(1:k,2);

 val=sum(dsk); % positive means class1 has more contribution, neg
means other
 if val>0
 class2(ii)=0;
 else
 class2(ii)=1;
 end

 end

 TD=sum(class1)+sum(class2);
 FD=M-TD;

 [true_false_knn]=[TD FD]
 C3(iii)=true_false_knn(1)/M*100;

end

% figure
% plot(difvec,C1,'rx-','linewidth',2,'MarkerSize',8); hold on
% plot(difvec,C2,'go-','linewidth',2,'MarkerSize',6);
% plot(difvec,C3,'ms-','linewidth',2,'MarkerSize',6);
% ylabel('Percent Correct Classification');
% xlabel('Separation of Data');
% title('Performance as a function of data separation');
% legend('Parzen Windows','Nearest Neighbor','K-Nearest Neighbors')

% figure
% plot(Nvec,C1,'rx-','linewidth',2,'MarkerSize',8); hold on
% plot(Nvec,C2,'go-','linewidth',2,'MarkerSize',6);
% plot(Nvec,C3,'ms-','linewidth',2,'MarkerSize',6);
% ylabel('Percent Correct Classification');
% xlabel('Feature Vector Dimension Size (N)');
% title('Performance as a function of feature vector dimension size');
% legend('Parzen Windows','Nearest Neighbor','K-Nearest Neighbors')

figure
plot(Mvec,C1,'rx-','linewidth',2,'MarkerSize',6); hold on
plot(Mvec,C2,'go-','linewidth',2,'MarkerSize',6);
plot(Mvec,C3,'ms-','linewidth',2,'MarkerSize',6);
ylabel('Percent Correct Classification');
xlabel('Number of Samples (M)');
title('Performance as a function of data sample size');
legend('Parzen Windows','Nearest Neighbor','K-Nearest Neighbors')

