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Basic problems emphasize the mechanics of using concepts and methods in a man-

ner similar to that illustrated in the examples that are solved in the text. 

Advanced problems explore and elaborate upon the foundations and practical im-

plications of the textual material. 

The first section of problems belongs to the basic category, and the answers are pro-

vided in the back of the book. The next two sections contain problems belonging to the 

basic and advanced categories, respectively. A final section, Mathematical Review, pro-

vides practice problems on the fundamental ideas of complex arithmetic and algebra. 

BASIC PROBLEMS WITH ANSWERS 

1.1. Express each of the following complex numbers in Cartesian form (x + jy): 
le- }1r e.i1T12 e- }1r!2 e.i51T!2 - f2e.i1T14 f2e.i91TI4 f2e- j91TI4 f2e- )1TI4 2 , , , ,yL ,-JL ,yL ,yL . 

1.2. Express each of the following complex numbers in polar form (re.i8, with - 'TT < 

() 'TT): 5, -2, -3j, - j J!' 1 + j, (1- j)2
, j(l- j), (1 + j)/(1- j), ( h + Jfi)l 

(l+j}3). - -

1.3. Determine the values of P x and Ex for each of the following signals: 

(a) x 1 (t) = e- 21 u(t) (b) x2(t) = e.i(:21+1T/4J (c) x3(t) = cos(t) 

(d) x1[n] = (e) x2[n] = e.i(1TI2n+1TI'd) (f) x3[n] = cos(*n) 

1.4. Let x[n] be a signal with x[n] = 0 for n < -2 and n > 4. For each signal given 

below, determine the values of n for which it is guaranteed to be zero. 

(a) x[n - 3] (b) x[n + 4] (c) x[- n] 

(d) x[ -n + 2] (e) x[ -n- 2] 

1.5. Let x(t) be a signal with x(t) = 0 fort < 3. For each signal given below, determine 

the values oft for which it is guaranteed to be zero. 

(a) x(l - t) (b) x(l - t) + x(2- t) (c) x(l - t)x(2 - t) 

(d) x(3t) (e) x(t/3) 

1.6. Determine whether or not each of the following signals is periodic: 

(a) x 1(t) = 2e.i(1+1TI4lu(t) (b) x2[n] = u[n] + u[ -n] 

(c) x3[n] = 4k]- 8[n- 1- 4k]} 

1.7. For each signal given below, determine all the values of the independent variable at 

which the even part of the signal is guaranteed to be zero. 

(a) x 1 [n] = u[n] - u[n - 4] (b) x2(t) = sin( 

(c) x3[n] = 3] (d) x4(t) = + 2) 

1.8. Express the real part of each of the following signals in the form Ae-ar cos(wt + cp), 

where A, a, w, and cp are real numbers with A> 0 and -7r < cp 'TT: 

(a) x 1 (t) = -2 (b) x2(t) = heJ1TI4 cos(3t + 27T) 

(c) x3(t) = e- 1 sin(3t + 'TT) (d) x4 (t) = je(-2-r JIOO)t 

1.9. Determine whether or not each of the following signals is periodic. If a signal is 

periodic, specify its fundamental period. 
(a) x 1(t) = jej\Ot (b) x2(t) = e(-l+iJr (c) x3(n) = ej71rn 
(d) x4[n] = 3ej31T!n+l/2)/5 (e) x5[n] = 3ei3/5(n+l/2) 
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1.10. Determine the fundamental period of the signal x(t) = 2cos(10t + 1)- sin(4t -1). 

1.11. Determine the fundamental period of the signal x[n] = 1 + ej4mzn - ej2mz!S. 

1.12. Consider the discrete-time signal 

x[n] = 1 - .L o[n - 1 - k]. 

k=3 

Determine the values of the integers M and n0 so that x[n] may be expressed as 

x[n] = u[Mn- no]. 

1.13. Consider the continuous-time signal 

x(t) = o(t + 2) - o(t - 2). 

Calculate the value of Eoo for the signal 

1.14. Consider a periodic signal 

y(t) = tx X(T)dT. 

0 t 1 

l<t<2 

with period T = 2. The derivative of this signal is related to the "impulse train" 

g(t) = .L o(t- 2k) 
k=-x 

with period T = 2. It can be shown that 

dx(t) 
----;[( = A I g(t - tJ) + A2g(t - t2)· 

Determine the values of A 1, t1, A 2, and t2. 

1.15. Consider a systemS with input x[ n] and output y[ n]. This system is obtained through 

a series interconnection of a system S1 followed by a system S2. The input-output 

relationships for S 1 and S2 are 

YI [n] = 2xi [n] + 4xi [n - 1], 

1 
Y2[n] = x2[n- 2] + 2x2[n- 3], 

where x 1 [n] and x2 [n] denote input signals. 

(a) Determine the input-output relationship for systemS. 

(b) Does the input-output relationship of systemS change if the order in which S1 

and S2 are connected in series is reversed (i.e., if S2 follows SJ)? 

1.16. Consider a discrete-time system with input x[n] and output y[n]. The input-output 

relationship for this system is 

y[n] = x[n]x[n - 2]. 
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(a) Is the system memoryless? 

(b) Determine the output of the system when the input is A8[n], where A is any 

real or complex number. 

(c) Is the system invertible? 

1.17. Consider a continuous-time system with input x(t) and output y(t) related by 

(a) Is this system causal? 

(b) Is this system linear? 

y(t) = x(sin(t)). 

1.18. Consider a discrete-time system with input x[n] and output y[n] related by 

n+n0 

y[n] = L x[k], 

where n0 is a finite positive integer. 

(a) Is this system linear? 

(a) Is this system time-invariant? 

k= n-no 

(c) If x[n] is known to be bounded by a finite integer B (i.e., jx[n]j < B for all n), it 

can be shown that y[n] is bounded by a finite number C. We conclude that the 

given system is stable. Express C in terms of Band n0 . 

1.19. For each of the following input-output relationships, determine whether the corre-

sponding system is linear, time invariant or both. 

(a) y(t) = t2 x(t- 1) (b) y[n] = x 2 [n- 2] 

(c) y[n] = x[n + 1] - x[n- 1] (d) y[n] = Od{x(t)} 

1.20. A continuous-time linear systemS with input x(t) and output y(t) yields the follow-

ing input-output pairs: 

x(t) = ei2t y(t) = ei3t, 

x(t) = e- i 2
t y(t) = e-131 . 

(a) If x 1 (t) = cos(2t), determine the corresponding output y1 (t) for systemS. 

(b) If x2(t) = cos(2(t - determine the corresponding output y2(t) for sys-

temS. 

BASIC PROBLEMS 

1.21. A continuous-time signal x(t) is shown in Figure P1.21. Sketch and label carefully 

each of the following signals: 

(a) x(t- 1) (b) x(2- t) (c) x(2t + 1) 

(d) x(4- (e) [x(t) + x(-t)]u(t) (f) x(t)[8(t + - 8(t-

1.22. A discrete-time signal is shown in Figure P1.22. Sketch and label carefully each of 

the following signals: 

(a) x[n- 4] 

(d) x[3n + 1] 

(g) + -1) 11 x[n] 

(b) x[3 - n] 

(e) x[n]u[3 - n] 

(h) x[(n - 1)2
] 

(c) x[3n] 

(f) x[n - 2]8[n - 2] 
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1.23. Determine and sketch the even and odd parts of the signals depicted in Figure Pl.23. 

Label your sketches carefully. 

(a) 

x(t) 

1 2 

-2 -1 1 
(b) 

The line --..__The line 

x(t) = - 2t for t < 0 x(t) = t for t > 0 

-1 
(c) Figure P1.23 

1.24. Determine and sketch the even and odd parts of the signals depicted in Figure P 1.24. 

Label your sketches carefully. 
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Figure P 1 .24 

1.25. Determine whether or not each of the following continuous-time signals is periodic. 

If the signal is periodic, determine its fundamental period. 

(a) x(t) = 3cos(4t+ }) (b) x(t) = ei(7Tf-l) 

(c) x(t) = [cos(2t- })f (d) x(t) = 8v{cos(47Tt)u(t)} 

(e) x(t) = 8v{sin(47Tt)u(t)} (f) x(t) = L e-<2
t-n) u(2t - n) 

n= -oo 

1.26. Determine whether or not each of the following discrete-time signals is periodic. If 

the signal is periodic, determine its fundamental period. 

(a) x[n] = sin( 6
; n + 1) (b) x[n] = cos(i- 7T) (c) x[n] = cos(in2

) 

(d) x[n] = (e) x[n] = 2cos(*n) +sin( in)- + 

1.27. In this chapter, we introduced a number of general properties of systems. In partic-

ular, a system may or may not be 

(1) Memoryless 

(2) Time invariant 

(3) Linear 

(4) Causal 

(S) Stable 

Determine which of these properties hold and which do not hold for each of the 

following continuous-time systems. Justify your answers. In each example, y(t) de-

notes the system output and x(t) is the system input. 
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(a) y(t) = x(t - 2) + x(2 - t) 

(c) y(t) = J !: x( T)dT 

{ 
0 x(t) < 0 

(e) y(t) = x'(t) + x(t - 2), x(t) 2:: 0 

(g) y(t) = 

Signals and Systems 

(b) y(t) = [cos(3t)]x(t) 

(d) y(t) = { + x(t - 2), 

(f) y(t) = x(t/3) 

Chap. 1 

t<O 

t 2:: 0 

1.28. Determine which of the properties listed in Problem 1.27 hold and which do not 

hold for each of the following discrete-time systems. Justify your answers. In each 

example, y[n] denotes the system output and x[n] is the system input. 

(a) y[n] = x[- n] (b) y[n] = x[n - 2] - 2x[n - 8] 

(c) y[n] = nx[n] (d) y[n] = Sv{x[n - 1]} 

{ 

x[n], n 2:: 1 { x[n], n 2:: 1 
(e) y[n] = 0, n = 0 (f) y[n] = 0, n = 0 

x[n + 1], n ::::: -1 x[n], n ::::: -1 

(g) y[n] = x[4n + 1] 

1.29. (a) Show that the discrete-time system whose input x[n] and output y[n] are related 

by y[n] = ffi-e{x[n]} is additive. Does this system remain additive if its input-

output relationship is changed to y[n] = ffi-e{ei7Tnl4 x[n]}? (Do not assume that 

x[n] is real in this problem.) 

(b) In the text, we discussed the fact that the property of linearity for a system is 

equivalent to the system possessing both the additivity property and homogene-

ity property. Determine whether each of the systems defined below is additive 

and/or homogeneous. Justify your answers by providing a proof for each prop-

erty if it holds or a counterexample if it does not. 

(i) y(t) = _l__[dx(t)]2 (ii) y[n] = x[n-1] ' X n- ' 
{ 

x[n]x[n-2] [ 1] .....1- 0 

x(t) dt 0, x[n - 1] = 0 

1.30. Determine if each of the following systems is invertible. If it is, construct the inverse 

system. If it is not, find two input signals to the system that have the same output. 

(a) y(t) = x(t- 4) (b) y(t) = cos[x(t)] 

(C) y[n] = nx[n] (d) y(t) = cry: X( T)dT 

{ 

x[n - 1], n 2:: 1 

(e) y[n] = 0, n = 0 (f) y[n] = x[n]x[n - 1] 

x[n], n ::::: -1 

(g) y[n] = x[l - n] 

(i) y[n] = -r£(4yz-k x[k] 

(h) y(t) = cr£ e-(t-T) X( T)dT 

(j) y(t) = 

(k) [n] = { x[n + 1], n 2:: 0 
y x[n], n ::::: -1 

(m) y[n] = x[2n] 

(I) y(t) = x(2t) 

(n) y[n] = { x[n/2], 
0, 

n even 

nodd 

1.31. In this problem, we illustrate one of the most important consequences of the prop-

erties of linearity and time invariance. Specifically, once we know the response 

of a linear system or a linear time-invariant (LTI) system to a single input or the 

responses to several inputs, we can directly compute the responses to many other 
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input signals. Much of the remainder of this book deals with a thorough exploitation 

of this fact in order to develop results and techniques for analyzing and synthesizing 

LTI systems. 

(a) Consider an LTI system whose response to the signal x1 (t) in Figure P1.31(a) is 

the signal y 1 ( t) illustrated in Figure P 1.31 (b). Determine and sketch carefully 

the response of the system to the input x2(t) depicted in Figure P1.31(c). 

(b) Determine and sketch the response of the system considered in part (a) to the 

input x 3(t) shown in Figure P1.31(d). 

0 2 0 1 2 

(b) (a) 

I I 

-1 -

2 3 4) t -1 0 1 2 

(c) (d) Figure P 1. 31 

ADVANCED PROBLEMS 

1.32. Let x(t) be a continuous-time signal, and let 

Yt (t) = x(2t) and Y2(t) = x(t/2). 

The signal y 1 (t) represents a speeded up version of x(t) in the sense that the duration 

of the signal is cut in half. Similarly, y2(t) represents a slowed down version of 

x(t) in the sense that the duration of the signal is doubled. Consider the following 

statements: 

(1) If x(t) is periodic, then y1 (t) is periodic. 

(2) If y 1 (t) is periodic, then x(t) is periodic. 

(3) If x(t) is periodic, then y2(t) is periodic. 

(4) If y2(t) is periodic, then x(t) is periodic. 

For each of these statements, determine whether it is true, and if so, determine the 

relationship between the fundamental periods of the two signals considered in the 

statement. If the statement is not true, produce a counterexample to it. 

1.33. Let x[ n] be a discrete-time signal, and let 

{ 

x[n/2] 
y 1 [n] = x[2n] and Y2[n] = O, ' 

n even 
n odd · 
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The signals y 1 [n] and y2 [n] respectively represent in some sense the speeded up and 

slowed down versions of x[n]. However, it should be noted that the discrete-time 

notions of speeded up and slowed down have subtle differences with respect to their 

continuous-time counterparts. Consider the following statements: 

(1) If x[n] is periodic, then y 1 [n] is periodic. 

(2) If y 1 [n] is periodic, then x[n] is periodic. 

(3) If x[n] is periodic, then y2[n] is periodic. 

(4) If y2[n] is periodic, then x[n] is periodic. 

For each of these statements, determine whether it is true, and if so, determine the 

relationship between the fundamental periods of the two signals considered in the 

statement. If the statement is not true, produce a counterexample to it. 

1.34. In this problem, we explore several of the properties of even and odd signals. 

(a) Show that if x[n] is an odd signal, then 

+x 

x[n] = 0. 
n=-x 

(b) Show that if x 1 [n] is an odd signal and x2[n] is an even signal, then x 1 [n]x2[n] 

is an odd signal. 

(c) Let x[n] be an arbitrary signal with even and odd parts denoted by 

Xe[n] = 8v{x[n]} 

and 

X0 [n] = 0d{x[n]}. 

Show that 

+x +oo +oo 

x
2
[n] = x;[n] + 

n=-x n=-x n= -oo 

(d) Although parts (a)-(c) have been stated in terms of discrete-time signals, the 

analogous properties are also valid in continuous time. To demonstrate this, 

show that 

where Xe(t) and X0 (t) are, respectively, the even and odd parts of x(t). 

1.35. Consider the periodic discrete-time exponential time signal 

x[n] = eim(27TIN)n. 

Show that the fundamental period of this signal is 

No = Nlgcd(m, N), 

where gcd(m, N) is the greatest common divisor of m and N-that is, the largest 

integer that divides both m and Nan integral number of times. For example, 

gcd(2, 3) = 1, gcd(2, 4) = 2, gcd(8, 12) = 4. 

Note that No = N if m and N have no factors in common. 
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1.36. Let x(t) be the continuous-time complex exponential signal 

x(t) = e.iwot 

65 

with fundamental frequency w0 and fundamental period To = 27T!w0 . Consider the 

discrete-time signal obtained by taking equally spaced samples of x(t)-that is, 

x[n] = x(nT) = e.iwonT. 

(a) Show that x[n] is periodic if and only if TIT0 is a rational number-that is, if 

and only if some multiple of the sampling interval exactly equals a multiple of 

the period of x(t). 

(b) Suppose that x[n] is periodic-that is, that 

T p 

To q' 
(P1.36-1) 

where p and q are integers. What are the fundamental period and fundamental 

frequency of x[n]? Express the fundamental frequency as a fraction of w 0T. 

(c) Again assuming that T!T0 satisfies eq. (Pl.36-1), determine precisely how 

many periods of x(t) are needed to obtain the samples that form a single period 

of x[n]. 

1.37. An important concept in many communications applications is the correlation be-

tween two signals. In the problems at the end of Chapter 2, we will have more to 

say about this topic and will provide some indication of how it is used in practice. 

For now, we content ourselves with a brief introduction to correlation functions and 

some of their properties. 

Let x(t) and y(t) be two signals; then the correlation function is defined as 

"'""(!) = x(t + T)y( T)dT. 

The function <f>xxCt) is usually referred to as the autocorrelation function of the signal 

x(t), while </>xy(t) is often called a cross-correlation function. 

(a) What is the relationship between </>xy(t) and </>yx(t)? 

(b) Compute the odd part of <f>xxU). 

(c) Suppose that y(t) = x(t + T). Express </>xy(t) and </>yy(t) in terms of <f>xx(t). 

1.38. In this problem, we examine a few of the properties of the unit impulse function. 

(a) Show that 

1 
8(2t) = 28(t). 

Hint: Examine Dtl(t). (See Figure 1.34.) 

(b) In Section 1.4, we defined the continuous-time unit impulse as the limit of the 

signal Dtl(t). More precisely, we defined several of the properties of 8(t) by 

examining the corresponding properties of Dtl(t). For example, since the signal 

ULI(t) = t% ih(T)dT 



66 Signals and Systems 

converges to the unit step 

u(t) = lim Ut,.(f), 
t. ---->0 

we could interpret B(t) through the equation 

u(t) Loc li(T)dT 

or by viewing B(t) as the formal derivative of u(t). 

Chap. 1 

(Pl.38-1) 

This type of discussion is important, as we are in effect trying to define 

B(t) through its properties rather than by specifying its value for each t, which 

is not possible. In Chapter 2, we provide a very simple characterization of the 

behavior of the unit impulse that is extremely useful in the study of linear time-

invariant systems. For the present, however, we concentrate on demonstrating 

that the important concept in using the unit impulse is to understand how it 

behaves. To do this, consider the six signals depicted in Figure P1.38. Show 

rl (t) 

1! D 
t1 t1 

2 2 

(a) 

(t) 

(c) 

r; (t) 
2 

(e) 

(b) 

ri (t) 

(d) 

(f) Figure P1.38 
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that each "behaves like an impulse" as Ll 0 in that, if we let 

= ,-it,(r)dr, 

then 

lim (t) = u(t). 
Ll-->0 

In each case, sketch and label carefully the signal (t). Note that 

ri (0) = ri (0) = 0 for all Ll. 

67 

Therefore, it is not enough to define or to think of o(t) as being zero fort =/= 0 

and infinite fort = 0. Rather, it is properties such as eq. (P1.38-1) that define 

the impulse. In Section 2.5 we will define a whole class of signals known as 

singularity functions, which are related to the unit impulse and which are also 

defined in terms of their properties rather than their values. 

1.39. The role played by u(t), o(t), and other singularity functions in the study of linear 

time-invariant systems is that of an idealization of a physical phenomenon, and, as 

we will see, the use of these idealizations allow us to obtain an exceedingly impor-

tant and very simple representation of such systems. In using singularity functions, 

we need, however, to be careful. In particular, we must remember that they are ideal-

izations, and thus, whenever we perform a calculation using them, we are implicitly 

assuming that this calculation represents an accurate description of the behavior of 

the signals that they are intended to idealize. To illustrate, consider the equation 

x(t)o(t) = x(O)o(t). (P1.39-l) 

This equation is based on the observation that 

x(t)o11 (t) = x(O)o11 (t). (P1.39-2) 

Taking the limit of this relationship then yields the idealized one given by eq. 

(P1.39-1). However, a more careful examination of our derivation of eq. (P1.39-2) 

shows that that equation really makes sense only if x(t) is continuous at t = 0. If it 

is not, then we will not have x(t) = x(O) for t small. 

To make this point clearer, consider the unit step signal u(t). Recall from eq. 

(1.70) that u(t) = 0 fort < 0 and u(t) = 1 fort > 0, but that its value at t = 0 is 

not defined. [Note, for example, that u11(0) = 0 for all Ll, while ui(O) = 4 (from 

Problem 1.38(b)).] The fact that u(O) is not defined is not particularly bothersome, 

as long as the calculations we perform using u(t) do not rely on a specific choice for 

u(O). For example, if f(t) is a signal that is continuous at t = 0, then the value of 

roooo f(u)u(u)da 

does not depend upon a choice for u(O). On the other hand, the fact that u(O) is 

undefined is significant in that it means that certain calculations involving singular-

ity functions are undefined. Consider trying to define a value for the product u(t)o(t). 
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To see that this cannot be defined, show that 

lim [u 11(t)o(t)] = 0, 

but 

In general, we can define the product of two signals without any difficulty, 

as long as the signals do not contain singularities (discontinuities, impulses, or the 

other singularities introduced in Section 2.5) whose locations coincide. When the 

locations do coincide, the product is undefined. As an example, show that the signal 

J 

+oc 

g(t) = -oc U(T)O(t- T)dT 

is identical to u(t); that is, it is 0 fort < 0, it equals 1 fort > 0, and it is undefined 

fort = 0. 

1.40. (a) Show that if a system is either additive or homogeneous, it has the property 

that if the input is identically zero, then the output is also identically zero. 

(b) Determine a system (either in continuous or discrete time) that is neither ad-

ditive nor homogeneous but which has a zero output if the input is identically 

zero. 

(c) From part (a), can you conclude that if the input to a linear system is zero be-

tween times t1 and t2 in continuous time or between times n1 and n2 in discrete 

time, then its output must also be zero between these same times? Explain your 

answer. 

1.41. Consider a systemS with input x[n] and output y[n] related by 

y[n] = x[n]{g[n] + g[n- 1]}. 

(a) If g[n] = 1 for all n, show that Sis time invariant. 

(b) If g[n] = n, show that Sis not time invariant. 

(c) If g[n] = 1 + ( -l)n, show that Sis time invariant. 

1.42. (a) Is the following statement true or false? 

The series interconnection of two linear time-invariant systems is itself a linear, 

time-invariant system. 

Justify your answer. 

(b) Is the following statement true or false? 

The series interconnection of two nonlinear systems is itself nonlinear. 

Justify your answer. 

(c) Consider three systems with the following input-output relationships: 

System 1: y[n] = { x[n/2], 
0, 

n even 

n odd ' 
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System 2: 
1 1 

y[n] = x[n] + 
2

x[n- 1] + 
4

x[n- 2], 

System 3: y[n] = x[2n]. 

Suppose that these systems are connected in series as depicted in Figure P1.42. 

Find the input-output relationship for the overall interconnected system. Is this 

system linear? Is it time invariant? 

y[n] 

Figure P1.42 

1.43. (a) Consider a time-invariant system with input x(t) and output y(t). Show that if 

x(t) is periodic with period T, then so is y(t). Show that the analogous result 

also holds in discrete time. 

(b) Give an example of a time-invariant system and a nonperiodic input signal x(t) 

such that the corresponding output y(t) is periodic. 

1.44. (a) Show that causality for a continuous-time linear system is equivalent to the 

following statement: 

For any time to and any input x(t) such that x(t) = 0 fort < t0, the correspond-

ing output y(t) must also be zero fort < t0 . 

The analogous statement can be made for a discrete-time linear system. 

(b) Find a nonlinear system that satisfies the foregoing condition but is not causal. 

(c) Find a nonlinear system that is causal but does not satisfy the condition. 

(d) Show that invertibility for a discrete-time linear system is equivalent to the 

following statement: 

The only input that produces y[n] = 0 for all n is x[n] = 0 for all n. 

The analogous statement is also true for a continuous-time linear system. 

(e) Find a nonlinear system that satisfies the condition of part (d) but is not invert-

ible. 

1.45. In Problem 1.37, we introduced the concept of correlation functions. It is often im-

portant in practice to compute the correlation function cf>hx(t), where h(t) is a fixed 

given signal, but where x(t) may be any of a wide variety of signals. In this case, 

what is done is to design a systemS with input x(t) and output cf>hx(t). 

(a) IsS linear? IsS time invariant? IsS causal? Explain your answers. 

(b) Do any of your answers to part (a) change if we take as the output cf>xh(t) rather 

than cf>hx(t)? 

1.46. Consider the feedback system of Figure P1.46. Assume that y[n] = 0 for n < 0. 

+ 'i2 e [n] I 
x[n] ... ..... ...... y[n] 

Figure P1.46 
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(a) Sketch the output when x[n] = 8[n]. 

(b) Sketch the output when x[n] = u[n]. 

Signals and Systems Chap. 1 

1.47. (a) LetS denote an incrementally linear system, and let x 1 [n] be an arbitrary input 

signal to S with corresponding output y 1 [n]. Consider the system illustrated in 

Figure Pl.47(a). Show that this system is linear and that, in fact, the overall 

input-output relationship between x[n] and y[n] does not depend on the partic-

ular choice of x 1 [ n]. 

(b) Use the result of part (a) to show that Scan be represented in the form shown 

in Figure 1.48. 

(c) Which ofthe following systems are incrementally linear? Justify your answers, 

and if a system is incrementally linear, identify the linear system Land the zero-

input response y0 [n] or y0(t) for the representation of the system as shown in 

Figure 1.48. 

(i) y[n] = n + x[n] + 2x[n + 4] 

{ 

n/2, 

(ii) [ ] (n-1 )/2 

Y n = (n - 1)/2 + x[k], n odd 

n even 

x[n] ·I s :cp )t y[n] 

(a) 
x1[n] Y1[n] 

t 

X (t) w (t) ·I y(t) )t y (t) 

(b) 

cos (1rn) 

v [n] 
z [n] = v2 [n] 

z [n] 

+ 
x [n] 

w [n] = x2 [n] 
w [n] 

(c) 

Figure P1.47 
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(
. ") [ ] { x[n] - x[n - 1] + 3, if x[O] 2: 0 
111 

Y n = x[n] - x[n- 1] - 3, if x[O] < 0 

(iv) The system depicted in Figure P1.47(b). 

(v) The system depicted in Figure P1.47(c). 

(d) Suppose that a particular incrementally linear system has a representation as 

in Figure 1.48, with L denoting the linear system and y0 [n] the zero-input re-

sponse. Show that Sis time invariant if and only if Lis a time-invariant system 

and y0 [ n] is constant. 

MATHEMATICAL REVIEW 

The complex number z can be expressed in several ways. The Cartesian or rectangular 

form for z is 

Z =X+ jy, 

where j = J=1 and x andy are real numbers referred to respectively as the real part and 

the imaginary part of z. As we indicated earlier, we will often use the notation 

x = CRe{z}, y = 9m{z}. 

The complex number z can also be represented in polar form as 

z = rej8
, 

where r > 0 is the magnitude of z and (} is the angle or phase of z. These quantities will 

often be written as 

r = lzi, 8 = <t:z. 

The relationship between these two representations of complex numbers can be de-

termined either from Euler s relation, 

eje = cos(} + j sin 8, 

or by plotting z in the complex plane, as shown in Figure P1.48, in which the coordinate 

axes are CRe{z} along the horizontal axis and 9m{z} along the vertical axis. With respect to 

this graphical representation, x andy are the Cartesian coordinates of z, and rand (} are its 

polar coordinates. 

!1m 

y 

Figure P1.48 
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1.48. Let zo be a complex number with polar coordinates (r0, 00 ) and Cartesian coordi-

nates (x0, y0 ). Determine expressions for the Cartesian coordinates of the following 

complex numbers in terms of x0 and YO· Plot the points zo, Zt, Z2, Z3, Z4, and zs in 

the complex plane when r0 = 2 and 00 = TTI4 and when r0 = 2 and 00 = TTI2. 

Indicate on your plots the real and imaginary parts of each point. 

(a) Zt = roe- J&o (b) Z2 = ro (c) Z3 = roef(&o+1T) 

(d) Z4 = roei(-&o+1T) (e) zs = roe.i(&o+21T) 

1.49. Express each of the following complex numbers in polar form, and plot them in the 

complex plane, indicating the magnitude and angle of each number: 

(a) 1 + jj3 (b) -5 (c) -5- 5j 

(d) 3 + 4j (e) (1 - j}3)3 (f) (1 + j)s 

( ) ( l3 + ·3)(1 _ ") (h) 2- j(6/jj) (i) I+ Jfi 
g "':J 1 1 2+ j(6Jjj) J3+ .i 
G) j(l + j)e.i7TI6 (k) ( j3 + j)2 j2e- j7T/4 (I) 

I+Jfi 

1.50. (a) Using Euler's relationship or Figure Pl.48, determine expressions for x andy 

in terms of r and (J. 

(b) Determine expressions for r and (J in terms of x and y. 

(c) If we are given only rand tan 0, can we uniquely determine x andy? Explain 

your answer. 

1.51. Using Euler's relation, derive the following relationships: 

(a) cos (J = + e- .i8) 

(b) sin (J = -d-J(e.i8 
- e- .i8 ) 

(c) cos2 
(J = + cos 20) 

(d) (sinO)(sin<f>) = cos((J- </>)- cos((J + </>) 

(e) sin( (J + </>) = sin (J cos </> + cos (J sin </> 

1.52. Let z denote a complex variable; that is, 

z = x + jy = re.i
8

. 

The complex conjugate of z is 

z* = x- jy = re- J&_ 

Derive each of the following relations, where z, z1, and z2 are arbitrary complex 

numbers: 

(a) zz* = r 2 

(b) = e.i2& 

(c) z + z* = 2CRe{z} 

(d) z - z* = 2jdm{z} 

(e) (zt + z2)* = + z; 
(f) (l!Zt z2)* z;, where a is any real number 

(g) (:-'- )* = 
.... 2 ...... 2 

(h) = 
.c2 2 

1.53. Derive the following relations, where z, z1, and z2 are arbitrary complex numbers: 

(a) (e2)* = e2* 

(b) ztz; + = = 
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(c) lzl = lz*l 
(d) lz1 z2l = lz1llz2l 
(e) CRe{z} :::; lzl, dm{z} :::; lzl 
(f) lz1z; + ziz2l :::; 21z1z2l 
(g) (lzii - lz2l)2 :::; lz1 + z2l2 :::; (lzii + lz2l? 

1.54. The relations considered in this problem are used on many occasions throughout the 

book. 

(a) Prove the validity of the following expression: 

N-1 { N Lan = 
n=O 1-a 

a= 1 

for any complex number a =I= 1 · 

This is often referred to as the finite sum formula. 

(b) Show that if Ia I < 1, then 

00 1 

Lan = 1-a· 
n=O 

This is often referred to as the infinite sum formula. 

(c) Show also if lal < 1, then 

(d) Evaluate 

00 

2.:nan = __ a_-=-
n=O (1 - a)2. 

assuming that Ia I < 1. 

1.55. Using the results from Problem 1.54, evaluate each of the following sums and ex-

press your answer in Cartesian (rectangular) form: 

(a) (b) 

(c) (d) 

(e) (f) 

1.56. Evaluate each of the following integrals, and express your answer in Cartesian (rect-

angular) form: 

(a) fo4ejml2dt 

(c) f
2

8 
ejm12dt 

(e) fooc e-t cos(t)dt 

(b) f0
6 ejm12dt 

(d) fooc e-(1 + j)t dt 

(f) f
0

oc e-2
t sin(3t)dt 
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