
Ques tion  1:
If we set  Sw to  t he  identity, t he  discriminan t  ends  u p  as  w0=m1−m2 , because t he  
inverse of t he  identity m a t rix is also t he  identi ty.  As long as  t he  within  classes  
sca t ter  m a t rix is jus t  a  scaled  version  of t he  iden tity m at rix, this  s houldn' t  m a t ter.

To tes t  t his  me tho d  using both  t he  conven tional ap proach and  se t ting the  sca t ter  
m a t rix to  t he  identity, a  se t  of da ta  poin t s  were genera ted  within two classes.  The 
da ta  poin t s  were two di mensional, with  equal p rior  p robability for  each class.  For 
class  1, t he  firs t  coordinate  of each  poin t  was  selected  from  a Normal dis t ribution  
with  mean  0.2 an d  sigma value 0.4.  The second  coordinate  also u sed  a  Normal 
dis tribu tion, bu t  ha d  a  mean  equal to  t he  value of t he  firs t  and  a  sigma equal to  0.1. 
For class  2, t he  selection  was identical excep t  t ha t  t he  mean  of t he  firs t  poin t  was  
0.7.  Therefore, t he  ran do m  variables  u sed  for  t he  different  poin t s  were not  
independen t.

To tes t  t his, 5000 t raining poin t s  were genera ted, along with  5000 tes t  poin t s.  The 
t raining poin t s  were used  to  genera te  a  discriminan t  value, which could  t hen  be u sed  
to  classify t he  tes t  poin t s.  For t he  s tan dard  Fisher  Linear  Discriminan t  te s t, an  
accuracy of 84.3% was achieved classifying the  poin t s.  While tes ting u sing the  
iden tity m at rix ins tead  of t he  scat ter  m at rix, an  accuracy of 73.9% was achieved. 
This indicates  t ha t  t he  iden tity m a t rix appears  to  classify a t  a  reduced  accuracy. 
This is p robably because, while t he  sca t ter  m a t rix was sym metric, it was  no t  a  scaled  
version  of t he  iden ti ty m a t rix.



Ques tion  2:
The tes t  da ta  for  t his  ques tion  included  10000 da ta  poin t s.  Each poin t  was  two -
dimensional with  t he  dis t ribu tion  for  each  dimension  being an  indepen den t  Normal 
dis tribu tion.  These da ta  poin t s  were s plit  in to  two classes, with  equal p robability for  
each  class.

For t he  firs t  di mension  of each  da ta  poin t, Class  1  had  a  m ean  of 0.2 an d  a  sigma  
value of 0.4 while Class  2  ha d  a  mean  of 0.7 and  a  sigma value of 0.4.  For t he  second  
dimension, Class  1  ha d  a  m ean  of 0.9 and  a  sigma value of 0.1, while Class  2  ha d  a  
mean  of 0.0 and  a  sigma value of 1.0.  In all te s t s, 5000 da ta  poin ts  were u sed  for  
t raining and  5000 for evaluating the  resul ting classifier.

a)
A back - p ro pagation  neural ne twork was u sed  for  t his  tes t.  The code for  t he  neural 
ne t  itself is p ublic do main  code writ ten  by Neil Sche menauer.  It can  be found  here a t  
h t t p: / / a rct rix.com / nas / python / b p n n.py.  This was  u sed  to  genera te  and  t rain  the  
neural ne t.  The algorith m s  implemented  in t he  code are t he  sa me as  t hose described  
in class.  The p rimary deviation  fro m  a nor mal BPNN is t ha t  t his  code uses  a  tanh  
sigmoid  function.

The neural ne t  implemented  u sed  two inpu t  nodes  (one for  each  di mension), a  
variable n u mber  of hidden  layer no des, and  two out p u t  no des.  The firs t  ou t pu t  node  
genera ted  a  value fro m  0  to  1  indica ting the  likelihood  of a  poin t  being in Class  1, 
while t he  second  indicated  the  likelihood  of a  poin t  being in Class  2.  The ou t pu t  
no de with  t he  highes t  value de ter mined  the  class  assigned  to  t he  tes t  poin t.

For t raining, a  learning coefficient  of 0.05 was u sed  with  a  m o ment u m  coefficient  of 
0.01.  The neural ne t  weighting values  were initialized  to  ran do m  values  (unifor m) 
between  - 2  an d  2  p rior  to  t raining.  In all te s t s, t he  ne t  was  t rained  for 301  
itera tions.  This was  long enough  to  arrive a t  a  local minimu m  in t he  error  s pace.

The evaluation  was t hen  perfor med  with  a  neural ne t  with  one, two, t h ree, an d  four  
hidden  layer nodes.  The accuracy was plo t ted  agains t  t he  n u mber  of hidden  layer 
no des:



The neural ne t  accuracy reached  a peak of abou t  93.8% at  t h ree hidden  layer no des. 
There was no  improvement  when  it was  extended  to  four, indicating tha t  t his  is t he  
limit  of t he  ability of t he  neural ne t  to  classify da ta.  This illus t ra tes  t he  m axim u m  
useful n u m ber  of hidden  layer no des.

b)
For t he  su p por t  vector  m achine, libsvm, p rod uced  by Chih - Chung Chang and  Chih -
Jen Lin, was  u sed  to  p rovide an  implementa tion  of t he  s u p por t  vector  m achine 
s t r uctu re.  Code for  t his  m ay be foun d  here: 
h t t p: / / www.csie.ntu.edu.tw / ~ cjlin / libsvm /.   This library is a  fairly easy - to - u se  
implementa tion  of an  SVM.  It p rovides  tools  for  genera ting SVM m o dels based  on  
t raining da ta  and  tes ting their accuracy agains t  a  se t  of tes t  da ta.  

For t his  tes t, t he  reco m men da tions  of t he  libsvm docu menta tion  (available here: 
h t t p: / / www.csie.ntu.edu.tw / ~ cjlin / p a pers / guide /guide.pdf) were u sed  to  p ro duce 
the  basic para meters  for  t he  SVM.  Primarly, t his  included  selection  of t he  kernel as:

K x, y=e−∥x−y∥2

The accuracy of t he  su p por t  vector  m achine was ap proximately 93.02%.  This is 
consis ten t  with  t he  neural ne t.
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Ques tion  3:
For each  classifier designed  here, 5000 da ta  poin t s  were used  as  't raining' da ta  to  
crea te  t he  PDFs and  5000 were u sed  as  tes t  poin t s  to  evaluate  t he  resulting PDF.  For 
each  tes t  poin t, t he  classifier  de ter mined  whether  t he  class  1  PDF or  class  2  PDF has  
a  higher  value.  The highest  PDF is t he  class  selected.  The n u m ber  of correct  
selections  is t hen  recorded  an d  checked  agains t  t he  to tal nu m ber  of tes t  poin t s  
(5000) to  calculate  t he  accuracy.

a)
The Parzen  Window classifier was  based  on  the  discussion  in - class  and  the  exam ple 
given on  the  Kiwi.  Because  t he  da ta  were two - di mensional, ins tead  one  one, dis tance 
was u sed  as  the  m ain  weighting para meter.  A Normal dis t ribution  was applied  as  
t he  window to  weight  t he  sa m ple poin t s, with  a  m ean  of zero  an d  a  s tan dard  
deviation  of one.

The h  para meter  was  t hen  varied  between  0.1 and  50.  Accuracy for  t he  classifier was  
plo t ted  according to  t he  h  para meter:

As can  be seen, a t  too  low an  h  value, far  poin t s  are  no t  weighted  heavily enough  an d  
so  u sually only a  single or  a  few poin t s  cont ribute.  As a  resul t, t he  PDF is no t  
s mooth  enough.  At too  high  an  h  value, t he  PDF beco mes  so  s mooth  tha t  t he  
dis tinguishing characteris tics of t he  u n derlying dis t ribu tion  are los t.  The m aximu m  
accuracy here was abou t  93.6%, at  an  h  value of 2.0.

b) 
The k - neares t - neighbor  classifier  u sed  a  sim ple syste m  where t he  neares t  k  da ta  
poin t s  were checked.  The class  with  t he  m os t  poin t s  was  t hen  deter mined  as  t he  
class  of t he  tes t  poin t.  The k values  were always od d  to  allow one class  or  t he  o ther  
to  always p revail.  The values  were selected  between  1  and  301.  Accuracy was t hen  
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plot ted  against  t he  k value:

As can  be seen  here, a  very similar pa t tern  to  t ha t  of t he  Parzen  window classifier  
exis ts.  For values  of k  too  s mall, no t  enough  nearby poin ts  are  evaluated.  At values  
of k too  large, t he  PDF is s moothed  ou t  too  m uch  and  so  featu res  of t he  u n derlying 
dis tribu tion  are los t.  Here, t he  highes t  accuracy was abou t  93.9%, a t  k = 25.  This is 
very close to  t he  m aximu m  accuracy of t he  Parzen  Windows me t ho d.

c)
The neares t - neighbor  me thod  is a  s pecial case of t he  k - neares t - neighbors  me tho d  
where k = 1.  As seen  in par t  b, t his  resul ts  in a  relatively low accuracy, as  t he  
resul ting PDF reflects  too m uch  on  the  par ticulars  of t he  chose  t raining poin t s  and  
no t  enough  on  the  featu res  of t he  dis t ribution  u n derlying those t raining poin ts.  The 
PDF th us  consis ts  only of 'spikes' near  each  poin t.
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Code Listing 1: Data poin t  Generator  for  Proble ms  2  an d  3
genera tor.py

""" 
Generate data points. 
""" 

from random import choice, gauss 
from sys import argv, exit 

# Distribution (mu, sigma) 
CLASSES = (0, 1) 
DIST = ( 
        [ # Class 1 
            (0.2, 0.4), 
            (0.9, 0.1), 
        ], 
        [ # Class 2 
            (0.7, 0.4), 
            (0.0, 1.0), 
        ], 
    ) 

# Check arguments 
if len(argv) != 2: 
    print 'USAGE: %s <num-points>' % argv[0] 
    exit(2) 
points = int(argv[1]) 

# Geneate data 
for p in range(points): 
    c = choice(CLASSES) 
    point = ['%f' % gauss(mu, sigma) for mu, sigma in DIST[c]] 
    print '%i:%s' % (c, ' '.join(point)) 



Code Listing 2: Data poin t  genera tor  for  Problem 1
genera tor2.py

""" 
Generate data points. 

This is similar to the first generate script, except the variables are not 
independent. 
""" 

from random import choice, gauss 
from sys import argv, exit 

# Distribution (mu, sigma) 
CLASSES = (0, 1) 
mu1 = [0.2, 0.7] 
sigma1 = [0.4, 0.1] 
sigma2 = [0.1, 0.7] 

# Check arguments 
if len(argv) != 2: 
    print 'USAGE: %s <num-points>' % argv[0] 
    exit(2) 
points = int(argv[1]) 

# Geneate data 
for p in range(points): 
    c = choice(CLASSES) 
    p1 = gauss(mu1[c], sigma1[c]) 
    p2 = gauss(p1, sigma2[c]) 
    point = ['%f' % i for i in [p1, p2]] 
    print '%i:%s' % (c, ' '.join(point)) 



Code Listing 3: Fisher  Linear  Discriminant  Classifier
p1_fld.py

""" 
Use a Fisher Linear Discriminant to classify data. 
""" 

from numpy import matrix 
from sys import argv, exit, stdin 

# Check args 
if len(argv) != 2: 
    print 'USAGE: %s <num-test-points>' % argv[0] 
    exit(2) 
test_points = int(argv[1]) 

# Get all training points and test points 
points = [l.strip().split(':') for l in stdin] 
points = [(int(p[0]), [float(i) for i in p[1].split(' ')]) for p in points] 

# Separate the training data from the test data 
train = points[:-test_points] 
test = points[-test_points:] 
print 'Training points: %i' % len(train) 
print 'Test points: %i' % len(test) 
print 

# Split training data into class 1 and 2 
train1 = [p for c, p in train if c == 0] 
train2 = [p for c, p in train if c == 1] 

# Calculate means for each class 
m1 = [sum([p[i] for p in train1]) / len(train1) for i in [0, 1]] 
m2 = [sum([p[i] for p in train2]) / len(train2) for i in [0, 1]] 
print 'm1: (%.2f, %.2f)' % tuple(m1) 
print 'm2: (%.2f, %.2f)' % tuple(m2) 
print 

# Convert to column vectors 
m1 = matrix(m1).transpose() 
m2 = matrix(m2).transpose() 
m = [m1, m2] 

# Convert data to column vectors 
train1 = matrix(train1).transpose() 
train2 = matrix(train2).transpose() 
train = [train1, train2] 

# Generate the 'within classes scatter matrix' 
Sw = matrix([[0.0, 0.0], [0.0, 0.0]]) 
for c in [0, 1]: 
    for i in range(1): 
        xi = matrix([[train[c][0, i]], [train[c][1, i]]]) 
        Sw += (xi - m[c]) * (xi - m[c]).transpose() 
print 'Sw = ' 
print Sw 

# Calculate inverse of Sw 
SwI = Sw**(-1) 
print 'Sw^-1 = ' 
print SwI 
print 

# Calculate w 
w = SwI * (m1 - m2) 
x_hat0 = (w.transpose() * (m1 + m2) / 2)[0, 0] 
print 'w = ', w 
print 'x hat 0 = ', x_hat0 
print 

# Classify all test data 
print 'Testing...' 



good = 0 
for c, p in test: 
    x = matrix([p]).transpose() 
    x_hat = (w.transpose() * x)[0, 0] 
    pc = 1 * (x_hat < x_hat0) 
    if pc == c: 
        good += 1 
print 'Correctly classified points: %i' % good 
print 'Incorrectly classified points: %i' % (len(test) - good) 



Code Listing 4: Modified  Fisher  Linear  Discriminan t  Classifier  (using iden ti ty m a t rix 
ins tead  of sca t ter  m a t rix)
p1_modified.py

""" 
Use a modified Fisher Linear Discriminant to classify data. 
This does not use a scatter matrix.  Instead, an identity matrix is used.
""" 

from numpy import matrix 
from sys import argv, exit, stdin 

# Check args 
if len(argv) != 2: 
    print 'USAGE: %s <num-test-points>' % argv[0] 
    exit(2) 
test_points = int(argv[1]) 

# Get all training points and test points 
points = [l.strip().split(':') for l in stdin] 
points = [(int(p[0]), [float(i) for i in p[1].split(' ')]) for p in points] 

# Separate the training data from the test data 
train = points[:-test_points] 
test = points[-test_points:] 
print 'Training points: %i' % len(train) 
print 'Test points: %i' % len(test) 
print 

# Split training data into class 1 and 2 
train1 = [p for c, p in train if c == 0] 
train2 = [p for c, p in train if c == 1] 

# Calculate means for each class 
m1 = [sum([p[i] for p in train1]) / len(train1) for i in [0, 1]] 
m2 = [sum([p[i] for p in train2]) / len(train2) for i in [0, 1]] 
print 'm1: (%.2f, %.2f)' % tuple(m1) 
print 'm2: (%.2f, %.2f)' % tuple(m2) 
print 

# Convert to column vectors 
m1 = matrix(m1).transpose() 
m2 = matrix(m2).transpose() 
m = [m1, m2] 

# Convert data to column vectors 
train1 = matrix(train1).transpose() 
train2 = matrix(train2).transpose() 
train = [train1, train2] 

# Use the identity matrix for Sw 
Sw = matrix([[1, 0], [0, 1]]) 

# Calculate inverse of Sw 
SwI = Sw**(-1) 

# Calculate w 
w = SwI * (m1 - m2) 
x_hat0 = (w.transpose() * (m1 + m2) / 2)[0, 0] 
print 'w = ', w 
print 'x hat 0 = ', x_hat0 
print 

# Classify all test data 
print 'Testing...' 
good = 0 
for c, p in test: 
    x = matrix([p]).transpose() 
    x_hat = (w.transpose() * x)[0, 0] 
    pc = 1 * (x_hat < x_hat0) 
    if pc == c: 
        good += 1 



print 'Correctly classified points: %i' % good 
print 'Incorrectly classified points: %i' % (len(test) - good) 



Code Listing 5: Conversion  scrip t  to  libsvm da ta  files
conv_data.py

""" 
Convert data to a format usable by LIBSVM. 
""" 

from sys import argv, exit, stdin 

# Get all points 
points = [l.strip().split(':') for l in stdin] 
points = [(int(p[0]), [float(i) for i in p[1].split(' ')]) for p in points] 

# Write all points back 
for c, p in points: 
    print '%i %s' % (c, 
        ' '.join(['%i:%f' % (i+1, p[i]) for i in range(len(p))])) 



Code Listing 6: Neural Network Evaluator
This uses  the  BPNN code from: h t t p: / / a rc t rix.com / nas / python / b p n n.py
p2_nn tes t.py

""" 
Test a neural net by training it and then test it against new data.  This 
evaluates the net based on its output.  If the output is closest to zero, it 
is determined as Class 1, otherwise it is class two. 
""" 

from sys import argv, exit, stdin 

from bpnn import NN 

# Check args 
if len(argv) != 3: 
    print 'USAGE: %s <num-test-points> <hidden-layer-nodes>' % argv[0] 
    exit(2) 
test_points = int(argv[1]) 
hidden_nodes = int(argv[2]) 

# Get all training points and test points 
points = [l.strip().split(':') for l in stdin] 
points = [(float(p[0]), [float(i) for i in p[1].split(' ')]) for p in points] 

# Separate the training data from the test data 
train = points[:-test_points] 
test = points[-test_points:] 
print 'Training points: %i' % len(train) 
print 'Test points: %i' % len(test) 

print 'Training...' 
# Train a new neural net 
n = NN(2, hidden_nodes, 2) 
pat = [(p[1], (1-p[0],p[0])) for p in train] 
n.train(pat, iterations=301, N=0.05, M=0.01) 

print 'Testing...' 
# Evaluate the net 
good = 0 
for c, p in test: 
    o1, o2 = n.update(p) 
    if o1 > o2: 
        if c < 0.1: 
            good += 1 
    else: 
        if c > 0.9: 
            good += 1 
print 'Correctly classified points: %i' % good 
print 'Incorrectly classified points: %i' % (len(test) – good) 



Code Listing 7: Parzen  Window Classifier
p3_par zen.py

""" 
Parzen window classifier. 
""" 

from math import e, pi 
from sys import argv, exit, stdin 

def dist(p1, p2): 
    return ((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)**0.5 

# Check args 
if len(argv) != 3: 
    print 'USAGE: %s <num-test-points> <h>' % argv[0] 
    exit(2) 
test_points = int(argv[1]) 
h = float(argv[2]) 

# Get all training points and test points 
points = [l.strip().split(':') for l in stdin] 
points = [(int(p[0]), [float(i) for i in p[1].split(' ')]) for p in points] 

# Separate the training data from the test data 
train = points[:-test_points] 
test = points[-test_points:] 
print 'Training points: %i' % len(train) 
print 'Test points: %i' % len(test) 

# Calculate Parzen Window parameters 
hn = h / len(train)**0.5 
print 'Hn: %f' % hn 

# Classify all test points based on the k-nearest training points 
print 'Testing...' 
good = 0 
i = 0 
c1 = (1/(2*pi)**0.5) 
for tc, tp in test: 
    pdf = [0.0, 0.0] 
    # Calculate PDF values for each class based of weighted samples 
    for c, p in train: 
        d = dist(p, tp) 
        pdf[c] += e**(-0.5*(d/hn)**2)/hn 
    # NOTE: We'd usually normalize the 'PDFs' here, but since we're just 
    #       comparing them we don't really need to do that. 
    
    # Classify based on PDFs 
    if pdf[tc] > pdf[1-tc]: 
        good+=1 
    
    # Show progress 
    if i % 100 == 1: 
        print i, '%.2f%%' % (float(good) / i * 100) 
    i += 1 
print 'Correctly classified points: %i' % good 
print 'Incorrectly classified points: %i' % (len(test) - good) 



Code Listing 8: k - neares t  neighbor  Classifier
p3_knn.py

""" 
K-nearest neighbor classifier. 
""" 

from sys import argv, exit, stdin 

def dist(p1, p2): 
    return ((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)**0.5 

# Check args 
if len(argv) != 3: 
    print 'USAGE: %s <num-test-points> <k>' % argv[0] 
    exit(2) 
test_points = int(argv[1]) 
k = int(argv[2]) 

# Get all training points and test points 
points = [l.strip().split(':') for l in stdin] 
points = [(int(p[0]), [float(i) for i in p[1].split(' ')]) for p in points] 

# Separate the training data from the test data 
train = points[:-test_points] 
test = points[-test_points:] 
print 'Training points: %i' % len(train) 
print 'Test points: %i' % len(test) 

# Classify all test points based on the k-nearest training points 
print 'Testing...' 
good = 0 
i = 0 
for tc, tp in test: 
    dists = [(dist(tp, p), c) for c, p in train] 
    dists.sort() 
    dists = dists[:k] 
    if len([c for d, c in dists if c == 0]) > k/2: 
        c = 0 
    else: 
        c = 1 
    if tc == c: 
        good += 1 
    if i % 100 == 1: 
        print i, '%.2f%%' % (float(good) / i * 100) 
    i += 1 
print 'Correctly classified points: %i' % good 
print 'Incorrectly classified points: %i' % (len(test) - good) 


