Question 1:

If we set S, to the identity, the discriminant ends up as WwWy=m,;—m, , because the
inverse of the identity matrix is also the identity. Aslong as the within classes
scatter matrix is just a scaled version of the identity matrix, this shouldn't matter.

To test this method using both the conventional approach and setting the scatter
matrix to the identity, a set of data points were generated within two classes. The
data points were two dimensional, with equal prior probability for each class. For
class 1, the first coordinate of each point was selected from a Normal distribution
with mean 0.2 and sigma value 0.4. The second coordinate also used a Normal
distribution, but had a mean equal to the value of the first and a sigma equal to 0.1.
For class 2, the selection was identical except that the mean of the first point was
0.7. Therefore, the random variables used for the different points were not
independent.

To test this, 5000 training points were generated, along with 5000 test points. The
training points were used to generate a discriminant value, which could then be used
to classify the test points. For the standard Fisher Linear Discriminant test, an
accuracy of 84.3% was achieved classifying the points. While testing using the
identity matrix instead of the scatter matrix, an accuracy of 73.9% was achieved.
This indicates that the identity matrix appears to classify at a reduced accuracy.
Thisis probably because, while the scatter matrix was symmetric, it was not a scaled
version of the identity matrix.

Question 2:

The test data for this question included 10000 data points. Each point was two-
dimensional with the distribution for each dimension being an independent Normal
distribution. These data points were split into two classes, with equal probability for
each class.

For the first dimension of each data point, Class 1 had a mean of 0.2 and asigma
value of 0.4 while Class 2 had a mean of 0.7 and a sigma value of 0.4. For the second
dimension, Class 1 had a mean of 0.9 and a sigma value of 0.1, while Class 2 had a
mean of 0.0 and a sigma value of 1.0. In all tests, 5000 data points were used for
training and 5000 for evaluating the resulting classifier.

a)

A back-propagation neural network was used for this test. The code for the neural
net itself is public domain code written by Neil Schemenauer. It can be found here at
http://arctrix.com/nas/python/bpnn.py. This was used to generate and train the
neural net. The algorithms implemented in the code are the same as those described
in class. The primary deviation from a normal BPNN is that this code uses atanh
sigmoid function.

The neural net implemented used two input nodes (one for each dimension), a
variable number of hidden layer nodes, and two output nodes. The first output node
generated a value from 0 to 1 indicating the likelihood of a point being in Class 1,
while the second indicated the likelihood of a point being in Class 2. The output
node with the highest value determined the class assigned to the test point.

For training, a learning coefficient of 0.05 was used with a momentum coefficient of
0.01. The neural net weighting values were initialized to random values (uniform)
between -2 and 2 prior to training. In all tests, the net was trained for 301
iterations. This was long enough to arrive at alocal minimum in the error space.

The evaluation was then performed with a neural net with one, two, three, and four
hidden layer nodes. The accuracy was plotted against the number of hidden layer
nodes:

Back-Propogation Neural Network

100.00%

90.00% -
80.00%
70.00%
60.00%

50.00%

Accuracy

40.00%
30.00%
20.00%
10.00%

0.00%

Hidden Nodes

The neural net accuracy reached a peak of about 93.8% at three hidden layer nodes.
There was no improvement when it was extended to four, indicating that thisisthe
limit of the ability of the neural net to classify data. Thisillustrates the maximum
useful number of hidden layer nodes.

b)

For the support vector machine, libsvm, produced by Chih-Chung Chang and Chih-
Jen Lin, was used to provide an implementation of the support vector machine
structure. Code for this may be found here:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Thislibrary isafairly easy-to-use
implementation of an SYM. It provides tools for generating SYM models based on
training data and testing their accuracy against a set of test data.

For this test, the recommendations of the libsvm documentation (available here:
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf) were used to produce
the basic parameters for the SYM. Primarly, thisincluded selection of the kernel as:

K(x,y)= Nl

The accuracy of the support vector machine was approximately 93.02%. Thisis
consistent with the neural net.

Question 3:

For each classifier designed here, 5000 data points were used as 'training' data to
create the PDFs and 5000 were used as test points to evaluate the resulting PDF. For
each test point, the classifier determined whether the class 1 PDF or class 2 PDF has
a higher value. The highest PDF is the class selected. The number of correct
selections is then recorded and checked against the total number of test points
(5000) to calculate the accuracy.

a)

The Parzen Window classifier was based on the discussion in-class and the example
given on the Kiwi. Because the data were two-dimensional, instead one one, distance
was used as the main weighting parameter. A Normal distribution was applied as
the window to weight the sample points, with a mean of zero and a standard
deviation of one.

The h parameter was then varied between 0.1 and 50. Accuracy for the classifier was
plotted according to the h parameter:

Parzen Windows

95.00%

90.00%

85.00%

Accuracy

80.00%

75.00%
1 10 100

As can be seen, at too low an h value, far points are not weighted heavily enough and
so usually only a single or a few points contribute. As aresult, the PDF is not
smooth enough. At too high an h value, the PDF becomes so smooth that the
distinguishing characteristics of the underlying distribution are lost. The maximum
accuracy here was about 93.6%, at an h value of 2.0.

b)

The k-nearest-neighbor classifier used a simple system where the nearest k data
points were checked. The class with the most points was then determined as the
class of the test point. The k values were always odd to allow one class or the other
to always prevail. The values were selected between 1 and 301. Accuracy was then

plotted against the k value:

kNN Accuracy

95.00%
94.00% S —
93.00%

92.00%

Accuracy

91.00%
90.00%

89.00%
1 10 100 1000

k

As can be seen here, avery similar pattern to that of the Parzen window classifier
exists. For values of k too small, not enough nearby points are evaluated. At values
of k too large, the PDF is smoothed out too much and so features of the underlying
distribution are lost. Here, the highest accuracy was about 93.9%, at k=25. Thisis
very close to the maximum accuracy of the Parzen Windows method.

C)

The nearest-neighbor method is a special case of the k-nearest-neighbors method
where k=1. Asseen in part b, thisresultsin arelatively low accuracy, as the
resulting PDF reflects too much on the particulars of the chose training points and
not enough on the features of the distribution underlying those training points. The
PDF thus consists only of 'spikes' near each point.

Code Listing 1: Data point Generator for Problems 2 and 3
generator.py

Generate data points.

from random import choice, gauss
from sys import argv, exit

Distribution (mu, sigma)
CLASSES = (0, 1)
DIST = (
[# Class
(0.2,
(0.9,

cor
[N

]I

[# Class
(0.7,
(0.0,

= oOoN
IS

]I
)

Check arguments

if len(argv) != 2:
print 'USAGE: %s <num-points>' % argv[0]
exit(2)

points = int(argv[1l])

Geneate data
for p in range(points):

¢ = choice(CLASSES)

point = ['%f' % gauss(mu, sigma) for mu, sigma in DIST[c]]
print '%i:%s' % (c, ' '.join(point))

Code Listing 2: Data point generator for Problem 1
generator2.py

Generate data points.

This is similar to the first generate script, except the variables are not
independent.

from random import choice, gauss
from sys import argv, exit

Distribution (mu, sigma)
CLASSES = (0, 1)

mul = [0.2, 0.7]

sigmal = [0.4, 0.1]

sigma2 = [0.1, 0.7]

Check arguments

if len(argv) != 2:
print 'USAGE: %s <num-points>' % argv[0]
exit(2)

points = int(argv[1l])

Geneate data
for p in range(points):
¢ = choice(CLASSES)
pl = gauss(mul[c], sigmal[c])
p2 = gauss(pl, sigma2[c])
point = ['%f' % i for 1 in [pl, p2]]
print '%i:%s' % (c, ' '.join(point))

Code Listing 3: Fisher Linear Discriminant Classifier
pl_fld.py

Use a Fisher Linear Discriminant to classify data.

from numpy import matrix
from sys import argv, exit, stdin

Check args

if len(argv) != 2:
print 'USAGE: %s <num-test-points>' % argv[0]
exit(2)

test points = int(argv[1])

Get all training points and test points
points = [l.strip().split(':') for 1 in stdin]
points [(int(p[O®]1), [float(i) for i in p[1].split(' ')]) for p in points]

Separate the training data from the test data
train = points[:-test points]

test = points[-test points:]

print 'Training points: %i' % len(train)

print 'Test points: %i' % len(test)

print

Split training data into class 1 and 2
trainl [p for ¢, p in train if c == 0]
train2 [p for ¢, p in train if c == 1]

Calculate means for each class

ml = [sum([p[i] for p in trainl]) / len(trainl) for i in [0, 1]]
m2 = [sum([p[i] for p in train2]) / len(train2) for i in [0, 1]]
print 'ml: (%.2f, %.2f)' % tuple(ml)
print 'm2: (%.2f, %.2f)' % tuple(m2)

print

Convert to column vectors
ml = matrix(ml).transpose()
m2 = matrix(m2).transpose()
m = [ml, m2]

Convert data to column vectors
trainl = matrix(trainl).transpose()
train2 matrix(train2).transpose()
train = [trainl, train2]

Generate the 'within classes scatter matrix'
Sw = matrix([[0.0, 0.0], [0.0, 0.0]1])
for ¢ in [0, 1]:
for i in range(1)
xi = matrix([[train[c][0, i]], [train[c][1, il]1])
Sw += (xi - m[c]) * (xi - m[c]).transpose()
print 'Sw = '
print Sw

Calculate inverse of Sw
Swl = Sw¥*(-1)

print 'Sw*-1 =
print SwI
print

Calculate w
w=Swl * (ml - m2)
X _hat0 = (w.transpose() * (ml + m2) / 2)[0, 0]

print 'w =", w
print 'x hat 0 = ', x hato
print

Classify all test data
print 'Testing...'

good = 0
for ¢, p in test:
x = matrix([p]).transpose()
x_hat = (w.transpose() * x)[0, 0]
pc =1 * (x _hat < x_hato)
if pc == c:
good += 1
print 'Correctly classified points: %i

' % good
print 'Incorrectly classified points: %i' %

! (len(test) - good)

Code Listing 4: Modified Fisher Linear Discriminant Classifier (using identity matrix
instead of scatter matrix)
pl_modified.py

Use a modified Fisher Linear Discriminant to classify data.
This does not use a scatter matrix. Instead, an identity matrix is used.

from numpy import matrix
from sys import argv, exit, stdin

Check args

if len(argv) != 2:
print 'USAGE: %s <num-test-points>' % argv[0]
exit(2)

test points = int(argv([1])

Get all training points and test points
points [L.strip().split(':") for 1 in stdin]
points [(int(p[0]), [float(i) for i in p[1l].split(' ')1) for p in points]

Separate the training data from the test data
train = points[:-test points]

test = points[-test points:]

print 'Training points: %i' % len(train)

print 'Test points: %i' % len(test)

print

Split training data into class 1 and 2
trainl = [p for ¢, p in train if c == 0]
train2 = [p for ¢, p in train if ¢ == 1]

Calculate means for each class
ml = [sum([p[i] for p in trainl]
m2 = [sum([p[i] for p in train2]
print 'ml: (%.2f, %.2f)' %
print 'm2: (%.2f, %.2f)' % tuple
print

/ len(trainl) for i in [0, 1]]
/ len(train2) for i in [0, 1]]
1
2

Convert to column vectors
ml = matrix(ml).transpose()
m2 = matrix(m2).transpose()
m = [ml, m2]

Convert data to column vectors
trainl = matrix(trainl).transpose()
train2 matrix(train2).transpose()
train = [trainl, train2]

Use the identity matrix for Sw
Sw = matrix([[1, 01, [0, 111)

Calculate inverse of Sw
Swl = Sw¥*(-1)

Calculate w
w = Swl * (ml - m2)
X _hat0 = (w.transpose() * (ml + m2) / 2)[0, 0]

print 'w =", w
print 'x hat 0 = ', x hato
print

Classify all test data
print 'Testing...'
good = 0
for ¢, p in test:
x = matrix([p]).transpose()
x_hat = (w.transpose() * x)[0, 0]
pc =1 * (x _hat < x_hato)
if pc == c:
good += 1

print 'Correctly classified points: %i

' % good
print 'Incorrectly classified points: %i' %

! (len(test) - good)

Code Listing 5: Conversion script to libsvm data files
conv_data.py

Convert data to a format usable by LIBSVM.

from sys import argv, exit, stdin

Get all points
points = [l.strip().split(':"') for 1 in stdin]
points = [(int(p[0]), [float(i) for i in p[1l].split(' ')]) for p in points]

Write all points back
for c, p in points:
print '%i %s' %

(c
Yotljoin([%1

:%f' % (i+l, p[i]) for i in range(len(p))1))

Code Listing 6: Neural Network Evaluator
This uses the BPNN code from: http://arctrix.com/nas/python/bpnn.py
p2_nntest.py

Test a neural net by training it and then test it against new data. This
evaluates the net based on its output. If the output is closest to zero, it
is determined as Class 1, otherwise it is class two.

from sys import argv, exit, stdin
from bpnn import NN

Check args

if len(argv) != 3:
print 'USAGE: %s <num-test-points> <hidden-layer-nodes>' % argv[0]
exit(2)

test points = int(argv[1])

hidden nodes = int(argv[2])

Get all training points and test points
points = [l.strip().split(':") for 1 in stdin]
points = [(float(p[0]), [float(i) for i in p[l].split(' ')]) for p in points]

Separate the training data from the test data
train = points[:-test points]

test = points[-test points:]

print 'Training points: %i' % len(train)

print 'Test points: %i' % len(test)

print 'Training...'

Train a new neural net

n = NN(2, hidden nodes, 2)

pat = [(p[1], (1-p[0],p[0])) for p in train]
n.train(pat, iterations=301, N=0.05, M=0.01)

print 'Testing...'
Evaluate the net
good = 0
for ¢, p in test:
0l, 02 = n.update(p)

if ol > o02:
if ¢ < 0.1:
good += 1
else:
if ¢ > 0.9:
good += 1

print 'Correctly classified points: %i' % good
print 'Incorrectly classified points: %i' % (len(test) — good)

Code Listing 7: Parzen Window Classifier
p3_parzen.py

Parzen window classifier.

from math import e, pi
from sys import argv, exit, stdin

def dist(pl, p2):
return ((pl[01-p2[0]1)**2 + (pl[1l]-p2[1])**2)**0.5

Check args

if len(argv) != 3:
print 'USAGE: %s <num-test-points> <h>' % argv[0]
exit(2)

test points = int(argv[1])

h = float(argv[2])

Get all training points and test points
points = [l.strip().split(':') for 1 in stdin]
points [(int(p[0]1), [float(i) for i in p[1l].split(' ')]1) for p in points]

Separate the training data from the test data
train = points[:-test points]

test = points[-test points:]

print 'Training points: %i

print 'Test points: %i' %

' % len(train)
len(test)

Calculate Parzen Window parameters
hn = h / len(train)**0.5
print 'Hn: %f' % hn

Classify all test points based on the k-nearest training points
print 'Testing...'
good = 0
i=0
cl = (1/(2*pi)**0.5)
for tc, tp in test:
pdf = [0.0, 0.0]
Calculate PDF values for each class based of weighted samples
for c, p in train:
d = dist(p, tp)
pdflc] += e**(-0.5*(d/hn)**2)/hn
NOTE: We'd usually normalize the 'PDFs' here, but since we're just
comparing them we don't really need to do that.

Classify based on PDFs
if pdf[tc] > pdf[l-tc]:
good+=1

Show progress
if 1 % 100 == 1:
print i, '%.2f%%' % (float(good) / i * 100)
i+=1
print 'Correctly classified points: %i' % good
print 'Incorrectly classified points: %i' % (len(test) - good)

Code Listing 8: k-nearest neighbor Classifier
p3_knn.py

K-nearest neighbor classifier.

from sys import argv, exit, stdin

def dist(pl, p2):
return ((pl[01-p2[0]1)**2 + (pl[1l]-p2[1])**2)**0.5

Check args

if len(argv) !'= 3:
print 'USAGE: %s <num-test-points> <k>' % argv[0]
exit(2)

test points = int(argv[1])

k = int(argv([2])

Get all training points and test points
points = [l.strip().split(':') for 1 in stdin]
points [(int(p[O]1), [float(i) for i in p[1l].split(' ')]) for p in points]

Separate the training data from the test data
train = points[:-test points]

test = points[-test points:]

print 'Training points: %i' % len(train)

print 'Test points: %i' % len(test)

Classify all test points based on the k-nearest training points
print 'Testing...'
good = 0
i=0
for tc, tp in test:
dists = [(dist(tp, p), c) for c, p in train]
dists.sort()
dists = dists[:k]
if len([c for d, c in dists if ¢ == 0]) > k/2:
c=20
else:
c=1
if tc == c:
good += 1
if i % 100 == 1:
print i, '%.2f%%' % (float(good) / i * 100)
i+=1
print 'Correctly classified points: %i' % good
print 'Incorrectly classified points: %i' % (len(test) - good)

