
Ques tion 1:
If we set Sw to t he identity, t he discriminan t ends u p as w0=m1−m2 , because t he
inverse of t he identity m a t rix is also t he identi ty. As long as t he within classes
sca t ter m a t rix is jus t a scaled version of t he iden tity m at rix, this s houldn' t m a t ter.

To tes t t his me tho d using both t he conven tional ap proach and se t ting the sca t ter
m a t rix to t he identity, a se t of da ta poin t s were genera ted within two classes. The
da ta poin t s were two di mensional, with equal p rior p robability for each class. For
class 1, t he firs t coordinate of each poin t was selected from a Normal dis t ribution
with mean 0.2 an d sigma value 0.4. The second coordinate also u sed a Normal
dis tribu tion, bu t ha d a mean equal to t he value of t he firs t and a sigma equal to 0.1.
For class 2, t he selection was identical excep t t ha t t he mean of t he firs t poin t was
0.7. Therefore, t he ran do m variables u sed for t he different poin t s were not
independen t.

To tes t t his, 5000 t raining poin t s were genera ted, along with 5000 tes t poin t s. The
t raining poin t s were used to genera te a discriminan t value, which could t hen be u sed
to classify t he tes t poin t s. For t he s tan dard Fisher Linear Discriminan t te s t, an
accuracy of 84.3% was achieved classifying the poin t s. While tes ting u sing the
iden tity m at rix ins tead of t he scat ter m at rix, an accuracy of 73.9% was achieved.
This indicates t ha t t he iden tity m a t rix appears to classify a t a reduced accuracy.
This is p robably because, while t he sca t ter m a t rix was sym metric, it was no t a scaled
version of t he iden ti ty m a t rix.

Ques tion 2:
The tes t da ta for t his ques tion included 10000 da ta poin t s. Each poin t was two -
dimensional with t he dis t ribu tion for each dimension being an indepen den t Normal
dis tribu tion. These da ta poin t s were s plit in to two classes, with equal p robability for
each class.

For t he firs t di mension of each da ta poin t, Class 1 had a m ean of 0.2 an d a sigma
value of 0.4 while Class 2 ha d a mean of 0.7 and a sigma value of 0.4. For t he second
dimension, Class 1 ha d a m ean of 0.9 and a sigma value of 0.1, while Class 2 ha d a
mean of 0.0 and a sigma value of 1.0. In all te s t s, 5000 da ta poin ts were u sed for
t raining and 5000 for evaluating the resul ting classifier.

a)
A back - p ro pagation neural ne twork was u sed for t his tes t. The code for t he neural
ne t itself is p ublic do main code writ ten by Neil Sche menauer. It can be found here a t
h t t p: / / a rct rix.com / nas / python / b p n n.py. This was u sed to genera te and t rain the
neural ne t. The algorith m s implemented in t he code are t he sa me as t hose described
in class. The p rimary deviation fro m a nor mal BPNN is t ha t t his code uses a tanh
sigmoid function.

The neural ne t implemented u sed two inpu t nodes (one for each di mension), a
variable n u mber of hidden layer no des, and two out p u t no des. The firs t ou t pu t node
genera ted a value fro m 0 to 1 indica ting the likelihood of a poin t being in Class 1,
while t he second indicated the likelihood of a poin t being in Class 2. The ou t pu t
no de with t he highes t value de ter mined the class assigned to t he tes t poin t.

For t raining, a learning coefficient of 0.05 was u sed with a m o ment u m coefficient of
0.01. The neural ne t weighting values were initialized to ran do m values (unifor m)
between - 2 an d 2 p rior to t raining. In all te s t s, t he ne t was t rained for 301
itera tions. This was long enough to arrive a t a local minimu m in t he error s pace.

The evaluation was t hen perfor med with a neural ne t with one, two, t h ree, an d four
hidden layer nodes. The accuracy was plo t ted agains t t he n u mber of hidden layer
no des:

The neural ne t accuracy reached a peak of abou t 93.8% at t h ree hidden layer no des.
There was no improvement when it was extended to four, indicating tha t t his is t he
limit of t he ability of t he neural ne t to classify da ta. This illus t ra tes t he m axim u m
useful n u m ber of hidden layer no des.

b)
For t he su p por t vector m achine, libsvm, p rod uced by Chih - Chung Chang and Chih -
Jen Lin, was u sed to p rovide an implementa tion of t he s u p por t vector m achine
s t r uctu re. Code for t his m ay be foun d here:
h t t p: / / www.csie.ntu.edu.tw / ~ cjlin / libsvm /. This library is a fairly easy - to - u se
implementa tion of an SVM. It p rovides tools for genera ting SVM m o dels based on
t raining da ta and tes ting their accuracy agains t a se t of tes t da ta.

For t his tes t, t he reco m men da tions of t he libsvm docu menta tion (available here:
h t t p: / / www.csie.ntu.edu.tw / ~ cjlin / p a pers / guide /guide.pdf) were u sed to p ro duce
the basic para meters for t he SVM. Primarly, t his included selection of t he kernel as:

K x, y=e−∥x−y∥2

The accuracy of t he su p por t vector m achine was ap proximately 93.02%. This is
consis ten t with t he neural ne t.

1 2 3 4
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Back­Propogation Neural Network

Hidden Nodes

Ac
cu

ra
cy

Ques tion 3:
For each classifier designed here, 5000 da ta poin t s were used as 't raining' da ta to
crea te t he PDFs and 5000 were u sed as tes t poin t s to evaluate t he resulting PDF. For
each tes t poin t, t he classifier de ter mined whether t he class 1 PDF or class 2 PDF has
a higher value. The highest PDF is t he class selected. The n u m ber of correct
selections is t hen recorded an d checked agains t t he to tal nu m ber of tes t poin t s
(5000) to calculate t he accuracy.

a)
The Parzen Window classifier was based on the discussion in - class and the exam ple
given on the Kiwi. Because t he da ta were two - di mensional, ins tead one one, dis tance
was u sed as the m ain weighting para meter. A Normal dis t ribution was applied as
t he window to weight t he sa m ple poin t s, with a m ean of zero an d a s tan dard
deviation of one.

The h para meter was t hen varied between 0.1 and 50. Accuracy for t he classifier was
plo t ted according to t he h para meter:

As can be seen, a t too low an h value, far poin t s are no t weighted heavily enough an d
so u sually only a single or a few poin t s cont ribute. As a resul t, t he PDF is no t
s mooth enough. At too high an h value, t he PDF beco mes so s mooth tha t t he
dis tinguishing characteris tics of t he u n derlying dis t ribu tion are los t. The m aximu m
accuracy here was abou t 93.6%, at an h value of 2.0.

b)
The k - neares t - neighbor classifier u sed a sim ple syste m where t he neares t k da ta
poin t s were checked. The class with t he m os t poin t s was t hen deter mined as t he
class of t he tes t poin t. The k values were always od d to allow one class or t he o ther
to always p revail. The values were selected between 1 and 301. Accuracy was t hen

1 10 100
75.00%

80.00%

85.00%

90.00%

95.00%

Parzen Windows

h

Ac
cu

ra
cy

plot ted against t he k value:

As can be seen here, a very similar pa t tern to t ha t of t he Parzen window classifier
exis ts. For values of k too s mall, no t enough nearby poin ts are evaluated. At values
of k too large, t he PDF is s moothed ou t too m uch and so featu res of t he u n derlying
dis tribu tion are los t. Here, t he highes t accuracy was abou t 93.9%, a t k = 25. This is
very close to t he m aximu m accuracy of t he Parzen Windows me t ho d.

c)
The neares t - neighbor me thod is a s pecial case of t he k - neares t - neighbors me tho d
where k = 1. As seen in par t b, t his resul ts in a relatively low accuracy, as t he
resul ting PDF reflects too m uch on the par ticulars of t he chose t raining poin t s and
no t enough on the featu res of t he dis t ribution u n derlying those t raining poin ts. The
PDF th us consis ts only of 'spikes' near each poin t.

1 10 100 1000
89.00%

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

kNN Accuracy

k

Ac
cu

ra
cy

Code Listing 1: Data poin t Generator for Proble ms 2 an d 3
genera tor.py

"""
Generate data points.
"""

from random import choice, gauss
from sys import argv, exit

Distribution (mu, sigma)
CLASSES = (0, 1)
DIST = (
 [# Class 1
 (0.2, 0.4),
 (0.9, 0.1),
],
 [# Class 2
 (0.7, 0.4),
 (0.0, 1.0),
],
)

Check arguments
if len(argv) != 2:
 print 'USAGE: %s <num-points>' % argv[0]
 exit(2)
points = int(argv[1])

Geneate data
for p in range(points):
 c = choice(CLASSES)
 point = ['%f' % gauss(mu, sigma) for mu, sigma in DIST[c]]
 print '%i:%s' % (c, ' '.join(point))

Code Listing 2: Data poin t genera tor for Problem 1
genera tor2.py

"""
Generate data points.

This is similar to the first generate script, except the variables are not
independent.
"""

from random import choice, gauss
from sys import argv, exit

Distribution (mu, sigma)
CLASSES = (0, 1)
mu1 = [0.2, 0.7]
sigma1 = [0.4, 0.1]
sigma2 = [0.1, 0.7]

Check arguments
if len(argv) != 2:
 print 'USAGE: %s <num-points>' % argv[0]
 exit(2)
points = int(argv[1])

Geneate data
for p in range(points):
 c = choice(CLASSES)
 p1 = gauss(mu1[c], sigma1[c])
 p2 = gauss(p1, sigma2[c])
 point = ['%f' % i for i in [p1, p2]]
 print '%i:%s' % (c, ' '.join(point))

Code Listing 3: Fisher Linear Discriminant Classifier
p1_fld.py

"""
Use a Fisher Linear Discriminant to classify data.
"""

from numpy import matrix
from sys import argv, exit, stdin

Check args
if len(argv) != 2:
 print 'USAGE: %s <num-test-points>' % argv[0]
 exit(2)
test_points = int(argv[1])

Get all training points and test points
points = [l.strip().split(':') for l in stdin]
points = [(int(p[0]), [float(i) for i in p[1].split(' ')]) for p in points]

Separate the training data from the test data
train = points[:-test_points]
test = points[-test_points:]
print 'Training points: %i' % len(train)
print 'Test points: %i' % len(test)
print

Split training data into class 1 and 2
train1 = [p for c, p in train if c == 0]
train2 = [p for c, p in train if c == 1]

Calculate means for each class
m1 = [sum([p[i] for p in train1]) / len(train1) for i in [0, 1]]
m2 = [sum([p[i] for p in train2]) / len(train2) for i in [0, 1]]
print 'm1: (%.2f, %.2f)' % tuple(m1)
print 'm2: (%.2f, %.2f)' % tuple(m2)
print

Convert to column vectors
m1 = matrix(m1).transpose()
m2 = matrix(m2).transpose()
m = [m1, m2]

Convert data to column vectors
train1 = matrix(train1).transpose()
train2 = matrix(train2).transpose()
train = [train1, train2]

Generate the 'within classes scatter matrix'
Sw = matrix([[0.0, 0.0], [0.0, 0.0]])
for c in [0, 1]:
 for i in range(1):
 xi = matrix([[train[c][0, i]], [train[c][1, i]]])
 Sw += (xi - m[c]) * (xi - m[c]).transpose()
print 'Sw = '
print Sw

Calculate inverse of Sw
SwI = Sw**(-1)
print 'Sw^-1 = '
print SwI
print

Calculate w
w = SwI * (m1 - m2)
x_hat0 = (w.transpose() * (m1 + m2) / 2)[0, 0]
print 'w = ', w
print 'x hat 0 = ', x_hat0
print

Classify all test data
print 'Testing...'

good = 0
for c, p in test:
 x = matrix([p]).transpose()
 x_hat = (w.transpose() * x)[0, 0]
 pc = 1 * (x_hat < x_hat0)
 if pc == c:
 good += 1
print 'Correctly classified points: %i' % good
print 'Incorrectly classified points: %i' % (len(test) - good)

Code Listing 4: Modified Fisher Linear Discriminan t Classifier (using iden ti ty m a t rix
ins tead of sca t ter m a t rix)
p1_modified.py

"""
Use a modified Fisher Linear Discriminant to classify data.
This does not use a scatter matrix. Instead, an identity matrix is used.
"""

from numpy import matrix
from sys import argv, exit, stdin

Check args
if len(argv) != 2:
 print 'USAGE: %s <num-test-points>' % argv[0]
 exit(2)
test_points = int(argv[1])

Get all training points and test points
points = [l.strip().split(':') for l in stdin]
points = [(int(p[0]), [float(i) for i in p[1].split(' ')]) for p in points]

Separate the training data from the test data
train = points[:-test_points]
test = points[-test_points:]
print 'Training points: %i' % len(train)
print 'Test points: %i' % len(test)
print

Split training data into class 1 and 2
train1 = [p for c, p in train if c == 0]
train2 = [p for c, p in train if c == 1]

Calculate means for each class
m1 = [sum([p[i] for p in train1]) / len(train1) for i in [0, 1]]
m2 = [sum([p[i] for p in train2]) / len(train2) for i in [0, 1]]
print 'm1: (%.2f, %.2f)' % tuple(m1)
print 'm2: (%.2f, %.2f)' % tuple(m2)
print

Convert to column vectors
m1 = matrix(m1).transpose()
m2 = matrix(m2).transpose()
m = [m1, m2]

Convert data to column vectors
train1 = matrix(train1).transpose()
train2 = matrix(train2).transpose()
train = [train1, train2]

Use the identity matrix for Sw
Sw = matrix([[1, 0], [0, 1]])

Calculate inverse of Sw
SwI = Sw**(-1)

Calculate w
w = SwI * (m1 - m2)
x_hat0 = (w.transpose() * (m1 + m2) / 2)[0, 0]
print 'w = ', w
print 'x hat 0 = ', x_hat0
print

Classify all test data
print 'Testing...'
good = 0
for c, p in test:
 x = matrix([p]).transpose()
 x_hat = (w.transpose() * x)[0, 0]
 pc = 1 * (x_hat < x_hat0)
 if pc == c:
 good += 1

print 'Correctly classified points: %i' % good
print 'Incorrectly classified points: %i' % (len(test) - good)

Code Listing 5: Conversion scrip t to libsvm da ta files
conv_data.py

"""
Convert data to a format usable by LIBSVM.
"""

from sys import argv, exit, stdin

Get all points
points = [l.strip().split(':') for l in stdin]
points = [(int(p[0]), [float(i) for i in p[1].split(' ')]) for p in points]

Write all points back
for c, p in points:
 print '%i %s' % (c,
 ' '.join(['%i:%f' % (i+1, p[i]) for i in range(len(p))]))

Code Listing 6: Neural Network Evaluator
This uses the BPNN code from: h t t p: / / a rc t rix.com / nas / python / b p n n.py
p2_nn tes t.py

"""
Test a neural net by training it and then test it against new data. This
evaluates the net based on its output. If the output is closest to zero, it
is determined as Class 1, otherwise it is class two.
"""

from sys import argv, exit, stdin

from bpnn import NN

Check args
if len(argv) != 3:
 print 'USAGE: %s <num-test-points> <hidden-layer-nodes>' % argv[0]
 exit(2)
test_points = int(argv[1])
hidden_nodes = int(argv[2])

Get all training points and test points
points = [l.strip().split(':') for l in stdin]
points = [(float(p[0]), [float(i) for i in p[1].split(' ')]) for p in points]

Separate the training data from the test data
train = points[:-test_points]
test = points[-test_points:]
print 'Training points: %i' % len(train)
print 'Test points: %i' % len(test)

print 'Training...'
Train a new neural net
n = NN(2, hidden_nodes, 2)
pat = [(p[1], (1-p[0],p[0])) for p in train]
n.train(pat, iterations=301, N=0.05, M=0.01)

print 'Testing...'
Evaluate the net
good = 0
for c, p in test:
 o1, o2 = n.update(p)
 if o1 > o2:
 if c < 0.1:
 good += 1
 else:
 if c > 0.9:
 good += 1
print 'Correctly classified points: %i' % good
print 'Incorrectly classified points: %i' % (len(test) – good)

Code Listing 7: Parzen Window Classifier
p3_par zen.py

"""
Parzen window classifier.
"""

from math import e, pi
from sys import argv, exit, stdin

def dist(p1, p2):
 return ((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)**0.5

Check args
if len(argv) != 3:
 print 'USAGE: %s <num-test-points> <h>' % argv[0]
 exit(2)
test_points = int(argv[1])
h = float(argv[2])

Get all training points and test points
points = [l.strip().split(':') for l in stdin]
points = [(int(p[0]), [float(i) for i in p[1].split(' ')]) for p in points]

Separate the training data from the test data
train = points[:-test_points]
test = points[-test_points:]
print 'Training points: %i' % len(train)
print 'Test points: %i' % len(test)

Calculate Parzen Window parameters
hn = h / len(train)**0.5
print 'Hn: %f' % hn

Classify all test points based on the k-nearest training points
print 'Testing...'
good = 0
i = 0
c1 = (1/(2*pi)**0.5)
for tc, tp in test:
 pdf = [0.0, 0.0]
 # Calculate PDF values for each class based of weighted samples
 for c, p in train:
 d = dist(p, tp)
 pdf[c] += e**(-0.5*(d/hn)**2)/hn
 # NOTE: We'd usually normalize the 'PDFs' here, but since we're just
 # comparing them we don't really need to do that.

 # Classify based on PDFs
 if pdf[tc] > pdf[1-tc]:
 good+=1

 # Show progress
 if i % 100 == 1:
 print i, '%.2f%%' % (float(good) / i * 100)
 i += 1
print 'Correctly classified points: %i' % good
print 'Incorrectly classified points: %i' % (len(test) - good)

Code Listing 8: k - neares t neighbor Classifier
p3_knn.py

"""
K-nearest neighbor classifier.
"""

from sys import argv, exit, stdin

def dist(p1, p2):
 return ((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)**0.5

Check args
if len(argv) != 3:
 print 'USAGE: %s <num-test-points> <k>' % argv[0]
 exit(2)
test_points = int(argv[1])
k = int(argv[2])

Get all training points and test points
points = [l.strip().split(':') for l in stdin]
points = [(int(p[0]), [float(i) for i in p[1].split(' ')]) for p in points]

Separate the training data from the test data
train = points[:-test_points]
test = points[-test_points:]
print 'Training points: %i' % len(train)
print 'Test points: %i' % len(test)

Classify all test points based on the k-nearest training points
print 'Testing...'
good = 0
i = 0
for tc, tp in test:
 dists = [(dist(tp, p), c) for c, p in train]
 dists.sort()
 dists = dists[:k]
 if len([c for d, c in dists if c == 0]) > k/2:
 c = 0
 else:
 c = 1
 if tc == c:
 good += 1
 if i % 100 == 1:
 print i, '%.2f%%' % (float(good) / i * 100)
 i += 1
print 'Correctly classified points: %i' % good
print 'Incorrectly classified points: %i' % (len(test) - good)

