Team Ninja-Sharks

Problem 4
Find the degree of the extension $\mathbb{Q}(\alpha)$ over \mathbb{Q}, where

$$
\alpha=\sqrt{\frac{1+\sqrt{5}}{2}}
$$

Solution:
Consider $f(x)=x^{4}-x^{2}-1$. I claim that f is a minimal polynomial for α.
α is a root of f since $f(\alpha)=0$. So all that remains to show is that f is irreducible over $\mathbb{Q} . f$ does not have any linear factors since $f(1) \neq 0$, and $f(-1) \neq 0$. (And thus f has no cubic factors). Suppose f has a quadratic factor. Then for some a, b, c, d,

$$
\begin{aligned}
x^{4}-x^{2}-1 & =\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right) \\
& =x^{4}+(a+c) x^{3}+(b+a c+d) x^{2}+(a d+b c) x+b d
\end{aligned}
$$

We have

$$
\begin{align*}
a+c=0, & \Longrightarrow a=-c \tag{1}\\
d+a c+b=-1 & \tag{2}\\
a d+b c=0 & \Longrightarrow a d=-b c \tag{3}\\
b d=-1, & \Longrightarrow b \in\{-1,1\} \tag{4}
\end{align*}
$$

- Case 1: $b=1, \Longrightarrow d=-1$ from equation $4, \Longrightarrow a=c$ from equation 3, but from equation $1, a=-c \Longrightarrow a=c=0$, then from equation 2 we get $0=-1 . \rightarrow \leftarrow$
- Case 2: $b=-1$. This is the same case as the first.

Therefore f has no quadratic factors, and f is irreducible over \mathbb{Q}. Then f is the minimal polynomial for α, and since the degree of f is 4 , the degree of the extension of $\mathbb{Q}(\alpha)$ over \mathbb{Q} is 4 .

