1. Let $f \in B V[0,1], g \in C^{1}(\mathbb{R})$. Show $g \circ f \in B V[0,1]$.
2. Find the limit of $\int_{0}^{\infty} f_{n}(x) d x$ for

$$
f_{n}(x)=\left\{\begin{array}{cl}
\frac{\sin \left(\frac{x+1}{n}\right)}{\sqrt{x}} & \text { if } n \leq x \leq 2 n \\
0 & \text { otherwise }
\end{array} .\right.
$$

3. Prove that there is no Lebesgue measurable subset A of \mathbb{R} such that $a|I| \leq$ $|A \cap I| \leq b|I|$ for all bounded open intervals $I \subseteq \mathbb{R}$ and $0<a \leq b<1$. Specifically, prove the following two assertions:
(a) If $|A \cap I| \leq b|I|$ for all open intervals $I \subseteq \mathbb{R}$ and $b<1$, then $|A|=0$.
(b) If $a|I| \leq|A \cap I|$ for all open intervals $I \subseteq \mathbb{R}$ and $a>0$, then $|A|=\infty$.
4. Let $f \in L^{1}$. Show f^{*}, the Hardy-Littlewood maximal function is lower semi-continuous. Then prove f^{*} is measurable. What about $F(x)=$ $\sup \int_{Q} \frac{|f|}{|Q|}$ where the sup is taken over all cubes containing x ?
5. (a) Let $f \in L^{1}(\mathbb{R})$ and of compact support. Show that for all large $|x|$, the Hardy-Littlewood maximal function, $f^{*}(x)$ satisfies

$$
f^{*}(x) \leq \frac{\|f\|_{1}}{|x|}
$$

(b) Now just suppose $f \in L^{1}(\mathbb{R})$ and show that for all large $|x|$,

$$
f^{*}(x) \leq 1+\frac{\|f\|_{1}}{|x|}
$$

6. Assume that $f \in A C(I)$ for every $I \subset \mathbb{R}$. If both f and f^{\prime} are in $L^{1}(\mathbb{R})$, show that
(a) $f(x) \rightarrow 0$ as $|x| \rightarrow \infty$ and
(b) $\int_{\mathbb{R}} f^{\prime}=0$.
7. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, and let $0<r<\infty$. Show that

$$
\frac{1}{\frac{1}{|I|} \int_{I} f} \leq\left(\frac{1}{|I|} \int_{I} \frac{1}{f^{r}}\right)^{1 / r}
$$

for every $I \subset \mathbb{R}$.
8. Let $C_{1}(0)=\left\{f \in L^{1}[0,1]:\|f\|_{1}=1\right\}$. Show $f \in C_{1}(0) \Rightarrow f$ is a convex combination of other L^{1}-unit vectors (i.e. $\exists 0<\lambda<1$ and $\exists g_{1}, g_{2} \in C_{1}(0)$ with $f=\lambda g_{1}+(1-\lambda) g_{2}$. (This result says the unit circle in L^{1} is everywhere flat in some sense. Every element of the circle of radius 1 is in the middle of a line connecting 2 other unit vectors!)
9. Let f be continuous on $[-1,1]$. Find

$$
\lim _{n \rightarrow \infty} n \int_{-1 / n}^{1 / n} f(x)(1-n|x|) d x
$$

10. Let X be a metric space and let $A \subset C(X)$ be a linear subspace that contains the constant functions. Suppose also that A is a lattice which separates points. Thus, if f and g are in A, then $f \vee g$ and $f \wedge g$ both belong to A. Let $K \subset X$ be compact and $a \notin K$. Prove that there is an $f \in A$ with $f(a)=0$ and $f(x)>1$ for all $x \in K$.
