8	M	ĺΩT	ch	2	002
•	TAT	ш	-11		いひん

ħ	Vame:				i.
•	100000	 	 	 	

EE 438

Exam No. 2

Spring 2002

- You have 50 minutes to work the following four problems.
- Be sure to show all your work to obtain full credit.
- The exam is closed book and closed notes.
- Calculators are permitted.
- 1. (25 pts.) Consider the Z transform

$$X(z) = \frac{3}{(1+z^{-1})(1-\frac{1}{2}z^{-1})}, \frac{1}{2} < |z| < 1.$$

Find the signal x[n] corresponding to this Z transform.

- 2. (25 pts) For each case below, answer the following questions:
 - i. Find the values of k where peaks in the N point DFT of the signal x[n] occur.
 - ii. Are leakage and picket fence effects present?
 - iii. Sketch the magnitude $X_N[k]$ of the N point DFT of the signal x[n].
 - a. $x[n] = \cos(\pi n/4)$, N = 24
 - b. $x[n] = \cos(\pi n / 3), N = 21$
 - c. $x[n] = \cos(\pi n / 3)$, N = 63

3 (25 pts.)

- a. Find an expression for a 6 point decimation-in-time Fast Fourier Transform algorithm.
- b. Draw a complete block diagram for your algorithm. Be sure to show every twiddle factor in order to obtain full credit.

4. (25 pts.) Compute a 6 point circular convolution of the two signals shown below:

n	0	1	2	3	4	5_
x[n]	1	2	3	0	• 0	-1
y[n]	1	1	1	-1	-1	<u>-1</u>