BLA

David Imberti

September 9, 2008

Pre-note: I find dealing with all the bounded/unbounded cases boring. So, I'm sticking to the bounded cases. Also, I skipped 3b, because...well, I didn't want to do it.

1) The solution should be the same as number 3 of the previous set.

Check my previous solution.
2) Let $A j \subseteq R$ and $\alpha_{j}=\sup _{j} A j$, we show that $\sup \left(\cup_{j} A j\right)=\sup \left\{\alpha_{j}\right\}$.
i) First we verify that $\sup \left\{\alpha_{j}\right\}$ is an upper bound of $\cup_{j} A_{j}$

Assume not, then $\exists a \in \cup_{j} A_{j} \ni a \geq \alpha_{j} \forall j$

But if $a \in \cup_{j} A_{j} \exists i \ni a \in A_{i}$ and $a \geq \alpha_{i}$, but this contradicts that $\alpha_{i}=\sup \left(A_{i}\right)$.
done.
ii) $\sup \left\{\alpha_{j}\right\}$ is the LEAST upper bound for $\cup_{j} A_{j}$

Assume $\cup_{j} A_{j} \leq a<\sup \left\{\alpha_{j}\right\}$

Then a is an upper bound $\forall A_{j}$

So, $\forall j \alpha_{j} \leq a$

Then a is an upper bound of $\cup\left\{\alpha_{j}\right\}$
$\therefore \sup \left(\left\{\alpha_{j}\right\}\right) \leq a$

Contradiction.
$\therefore \sup \left(\left\{\alpha_{j}\right\}\right)$ is the lub.
done.

Thus by definition $\sup \left(\cup_{j} A j\right)=\sup \left\{\alpha_{j}\right\}$, which is what we were trying to show.
3) Let $a_{j} \in \mathbf{R}, A_{N}=\left\{a_{N}, a_{N+1}, \cdots\right\}$
a)
i) We show that $\inf A_{N} \leq \inf A_{N+1}$

This should follow mutatis mutandis to ii shown below (but 1 and 2 need to be constructed with inf's)

Done.
ii) We show that $\sup A_{N} \geq \sup A_{N+1}$

Let $A_{N+1}=A_{1},\left\{a_{N}\right\}=A_{2}$

Let $\alpha_{1}=\sup \left(A_{1}\right)$.

Apply number 1 to get $\sup \left(A_{2}\right)=a_{N}$

Note that $A_{N}=A_{N+1} \cup\left\{a_{N}\right\}$, apply number 2 , and thus $\sup A_{N}=\sup \left\{\alpha_{1}, a_{N}\right\}$. By 1
again we have the two cases:
$\sup A_{N}=\alpha_{1}$ or $\sup A_{N}=a_{N}$.
I) $\sup A_{N}=\alpha_{1}$ is the trivial case where we satisfy $\sup A_{N} \geq \sup A_{N+1}$.

Termino.
II) Let $\sup A_{N}=\sup \left\{\alpha_{1}, a_{N}\right\}=a_{N}$

Still pretty trivial but since a_{N} is the supremum we have $a_{n} \geq \alpha_{1}$, which subtituting the correct expressions in $\sup A_{N} \geq \sup A_{N+1}$.

Termino.

Thus this shows that $\sup A_{N} \geq \sup A_{N+1}$.

Done.
4)
a) We show that $\oplus_{\mathbf{N}} \mathbf{Q}=\left\{\left(q_{1}, q_{1}, \cdots\right) \in \mathbf{Q} \times \mathbf{Q} \times \cdots\right.$: finitely many q_{i} are non-zero $\}$

This is countable, because \mathbf{Q} is countable by the corollary to 2.13 , and then by theorem 2.13 itself.
b) We show that $\Pi_{\mathbf{N}} \mathbf{Q}=\left\{\left(q_{1}, q_{1}, \cdots\right) \in \mathbf{Q} \times \mathbf{Q} \times \cdots\right\}$ is uncountable.

Notice that $A=\{0,1\} \subseteq \mathbf{Q}$ and thus $\Pi_{\mathbf{N}} A \subseteq \Pi_{\mathbf{N}} \mathbf{Q}$. But then A is the set of all sequences whose elements are digits 0 and 1 . Thus, by theorem $2.14 A$ is uncountable, and since $A \subseteq \mathbf{Q}$, then by theorem
2.8 (it states that no uncountable set can be a subset of a countable end by the end of the proof) $\Pi_{N} \mathbf{Q}$ is uncountable.

