Revisited Concept Exercise for Module 1 – No. 1 Wednesday, January 15, 2014

> Convert (3487)₁₀ to base 16

> Convert (C29E)₁₆ to base 2

> Convert (1101101)₂ to base 16

~	
	,

Revisited Concepts Exercise for Module 1 – No. 2a Friday, January 17, 2014

MATCHING – Write the letter of the example (on the right) corresponding to the named axiom or theorem:

Involution	A.	$(\mathbf{X} \cdot \mathbf{Y}) \cdot \mathbf{Z} = \mathbf{X} \cdot (\mathbf{Y} \cdot \mathbf{Z})$
Idempotency	В.	X+Y = Y+X
Identity	C.	$\mathbf{X} \cdot \mathbf{Y} + \mathbf{X} \cdot \mathbf{Y'} = \mathbf{X}$
Null Element	D.	$X \cdot X \cdot X = X$
Complement	E.	$X+(Y\cdot Z)=(X+Y)\cdot (X+Z)$
Associativity	F.	X + 1 = 1
Commutivity	G.	$\mathbf{X} \cdot \mathbf{X}' = 0$
Distributivity	н.	$(X+Y)' = X' \cdot Y'$
Combining	I.	$(\mathbf{X}')' = \mathbf{X}$
DeMorgan's Law	J.	$\mathbf{X} + 0 = \mathbf{X}$
Congengue	K	$\mathbf{X} \cdot \mathbf{V} + \mathbf{X}' \cdot \mathbf{Z} + \mathbf{V} \cdot \mathbf{Z} = \mathbf{X} \cdot \mathbf{V} + \mathbf{X}' \cdot \mathbf{Z}$

·		

Revisited Concepts Exercise for Module 1 – No. 2b Friday, January 17, 2014

MATCHING - Write the letter of the description (on the right) corresponding to the concept or device:

Capacitor	A.	Difference in electrical potential
Computer	В.	The flow of charge in a conductor between two points having a difference in potential
Current	С.	Amount of energy
Forward Voltage	D.	A device that stores an electric charge
Integrated Circuit (IC or "Chip")	Е.	The voltage drop across a Light Emitting Diode when it is forward biased
Microcontroller	F.	A collection of logic gates and/or other electronic circuits fabricated on a single silicon chip
Microprocessor	G.	An integrated circuit onto which a generic logic circuit can be programmed
Power	Н.	A digital device that sequentially executes a stored program
Programmable Logic Device (PLD)	I.	A single-chip embodiment of the major functional blocks of a computer
Voltage	J.	A complete computer on a chip, including integrated peripherals
CMOS	K.	Fiberglass reinforced epoxy substrate with etched copper circuitry (typically in multiple layers) used to create virtually all electronic devices
Discrete Logic	L.	A circuit constructed using small-scale Integrated (SSI) and medium-scale integrated (MSI) logic devices (NAND gates, decoders, Multiplexers, etc.)
Printed Circuit Board (PCB)	М.	A silicon chip fabrication technology based on Use of complementary pairs of NMOS and PMOS field effect transistors (MOSEFTs)

Revisited Concepts Exercise for Module 1 – No. 3 Wednesday, January 22, 2014

1. Describe the function of a P-channel MOSFET	LI.
--	-----

- 2. When a MOSFET is off, its drain-to-source impedance is on the order of:
- 3. Describe the <u>function</u> of a combinational circuit:

4. Fill out the truth table for a **NOT** gate:

Name of property:

A	(A)'
0	
1	

5. If I'm on a deserted island with my DK-1 kit (starring on the *Digital Survivor* show), I can build "anything digital" using only a bucket full of what (<u>single</u>) type of 2-input logic gate? What is the name of the property upon which this premise is based?

Type of 2-input gate:	 	

6. Using a total of **three** N-channel MOSFETs and **three** P-channel MOSFETs, draw a circuit schematic for a **three-input NAND** gate. The gate inputs should be labeled A, B, C and the gate output should be labeled F. Be sure to show the power (Vcc) and ground (GND) connections as well.

Revisited Concepts Exercise for Module 1 - No. 4 Monday, January 27, 2014

1. Fill out the truth table for a **2-input NAND** gate:

A	В	$(A \cdot B)'$
0	0	
0	1	
1	0	
1	1	

2. Draw a MOSFET-level circuit for a **2-input NAND** gate:

Revisited Concepts Exercise for Module 1 – No. 5 Wednesday, January 29, 2014

1.	Is it possible to have a negative DCNM? If so, what would it mean?
2.	What is the minimum DCNM necessary to ensure a functional circuit?
3.	Is it possible to have a negative fan-out? If so, what would it mean?
4.	What is the minimum fan-out necessary to ensure a functional circuit?
5.	What is the factor that limits the practical fan-in of a CMOS logic gate?

•	

Revisited Concepts Exercise for Module 1 – No. 6 Friday, January 31, 2014

Assume hypothetical logic family has the following D.C. characteristics:

$V_{CC} = 5 \text{ V}$	$V_{OH} = 3.50 \text{ V}$	$V_{\rm OL} = 0.50 \ m V$	$V_{\rm IH} = 2.50~{ m V}$	$V_{\rm IL} = 1.00 \ { m V}$
$V_{\rm TH} = (V_{\rm OH} - V_{\rm OL})/2$	$I_{OH} = -5.0 \text{ mA}$	$I_{\rm OL} = 10 \text{ mA}$	$I_{IH} = 500 \mu A$	$I_{\rm IL}$ = -2.0 mA

When interfacing an *LED* that has a *forward voltage* of 1.5 V to this logic family in a *current sourcing* configuration, *maximum brightness* will be achieved (within the rated specifications) using a current limiting resistor of the value along with its power dissipation:

Circuit and calculations:	
Current limiting resistor =Ω	Resistor power dissipation = mW

When interfacing an LED that has a forward voltage of 1.5 V to this logic family in a current sinking configuration, maximum brightness will be achieved (within the rated specifications) using a current limiting resistor of the value along with its power dissipation:

Circuit and calculations:	

Current limiting resistor = $_{ } \Omega$ Resistor power dissipation = $_{ } mW$

Practice for standardized exam questions — determine the one best response.

- 1. When a gate's rated I_{OH} specification is exceeded, the following is likely to happen:
 - (A) the V_{OH} of the gate will increase and the t_{TLH} of the gate will decrease
 - (B) the V_{OH} of the gate will decrease and the t_{TLH} of the gate will increase
 - (C) the V_{OL} of the gate will increase and the t_{THL} of the gate will increase
 - (D) the V_{OL} of the gate will decrease and the t_{THL} of the gate will decrease
 - (E) none of the above
- 2. When a gate's rated I_{OL} specification is exceeded, the following is likely to happen:
 - (A) the V_{OH} of the gate will increase and the t_{TLH} of the gate will decrease
 - (B) the V_{OH} of the gate will decrease and the t_{TLH} of the gate will increase
 - (C) the V_{OL} of the gate will increase and the t_{THL} of the gate will increase
 - (D) the V_{OL} of the gate will decrease and the t_{THL} of the gate will decrease
 - (E) none of the above
- 3. For CMOS gates, V_{IHmin} is typically:
 - (A) 10% of the supply voltage (Vcc)
 - (B) 30% of the supply voltage (Vcc)
 - (C) 50% of the supply voltage (Vcc)
 - (D) 70% of the supply voltage (Vcc)
 - (E) 90% of the supply voltage (Vcc)
- 4. For CMOS gates, the *switching threshold* is typically:
 - (A) 10% of the supply voltage (Vcc)
 - (B) 30% of the supply voltage (Vcc)
 - (C) 50% of the supply voltage (Vcc)
 - (D) 70% of the supply voltage (Vcc)
 - (E) 90% of the supply voltage (Vcc)
- 5. The largest source of noise in a digital circuit is from:
 - (A) RF communication devices (e.g., cell phones)
 - (B) cosmic rays
 - (C) power line disturbances
 - (D) the logic gates themselves
 - (E) none of the above
- 6. Electromagnetic interference could cause a "floating" (unconnected) gate input to:
 - (A) change from high-to-low or from low-to-high
 - (B) increase the V_{IH} of the gate relative to its specified value
 - (C) decrease the V_{IL} of the gate relative to its specified value
 - (D) pick up the satellite broadcast of a Purdue basketball victory
 - (E) none of the above