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ECE 544 Fall 2013
Problem Set 10
Due December 6, 2013

. Read Chapters 8land 9 of M. B. Pursley, Introduction to Digital Communications (MBP).
. MBP Problem 7.9,7.13,7.17, 7.20, 7.23
. MBP Problems 8.1, 8.7, 8.9

. MBP Problems Net covered on -‘:wu.o exam,

. The block diagram shown is a possible implementation of a differentially encoded communica-
tion system.

The encoder accepts a binary (i.e., 0 or 1) string By, at the input and produces a binary string
Dy at the output. The output string contains an extra digit D_;, which is set as an initial
condition of the encoder. The symbol “@” in the encoder denotes modulo 2 binary addition

(i.e.

, exclusive or).

The decoder takes a binary string input ﬁk and produces a binary string output Bk containing

one fewer digit than the input. The digits are lined up so that ideally By = By for k =
0,1,2,....
By, Dy, Xks
k=0,1,2, ... Encoder k——1,0,1,... | Symbolmap | .= ¢
_——— 0 = +1
D;=B;®D; 1 o -1
BPSK Modulator, Comm.
Chan., Carrier Recovery,
BPSK Demodulator
Xy, Dy, By
’ Symbol de-map)| ’ ’
o =-1,0,1, ... E=-1,0,1,... E=0,1,2, ...
k ! +1 = 0 Decoder
-1 = 1
(a) The table below gives an example input string By. Assuming that the encoder initial

(b)

©)

condition is D_1 = 0 as shown, fill in the values for the encoded bits Dy, in the indicated
row of the table.

Time index k

1 0 1 2 3 45 6 7 809
Be|- 0 1 1 01 010 01
Dy |0
Dy,
By | -

The bits Dy, starting from k = —1 are mapped to symbols, sent through the channel, and
then de-mapped to produce the estimated bit sequence Dy. Assuming that no bit errors
occur in transmission, fill in the row in the above table corresponding to Dg.

Then give a mathmatical formula for the decoder and write down the estimated bit
sequence l’%k in the above table.

Repeat part (b) for the table shown below but now assume that the channel is such that
the bits Dy, are the complements of the corresponding bits Dy. Use exactly the same
decoder as you found in part (b). The table is repeated below. You will need to fill the
Dy, row in with the same values as found in part (a).

Explain why the result you find is important in BPSK systems, which use either the
squaring loop or the Costas loop for carrier phase recovery.



Time index k

-1 01 2 3 4 5 6 7 8 9
B,|- 01 1 0 1 0 1 0 0 1
Dy | 0
Dy,

By | -

(d) [7 pts.] Repeat part (b) only now assuming that a single bit error is made in the channel
at time index k = 3, i.e., Dy = Dy, for k # 3 and D3 # Ds. The position of the bit error
is indicated in the table below with a small box.

Comment on the result in light of what was found in the homework problem about the
probability of error performance of differentially encoded BPSK in comparison to regular
BPSK.

Time index k

-1 01 2 3 4 5 6 7 8 9
B,|- 01 1 0 1 0 1 0 0 1
Dy |0
Dy []

6. This problem concerns just the encoder of the DBPSK system given before. Suppose that the
input bit string By is independent and identically distributed (i.i.d.) with

PBy=1)=p and P(By=0)=1-p.

(a) Assuming that the encoder initial state is D_; = 0 find the marginal probability distri-
bution of the encoder output for all time k, i.e., find

def
a = P(Dy=1)
for k > 0. Hint: Find a first order difference equation for ¢; and solve it.

(b) For general p, are the random variables {Dj, : k& > 0} identically distributed? Are they
statistically independent? You must prove or give a counter example.

(c) For the special case of p = 1/2, are the random variables {Dj, : k > 0} identically dis-
tributed? Are they statistically independent? You must prove or give a counter example.



7.7 Compare the decision statistics for the delay-and-multiply receiver of Figure 7-12 and
" the other receivers of Section 7.6.
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7.9 Compare the required £/Ny to the nearest tenth of a dB for coherent reception of
BPSK, differentially coherent detection of DBPSK, and noncoherent detection of BESK
if the bit error probability for each is to be 1075, Use Q(\/2E/Ny) = 10~ for
(€/No)as = 10.5 dB. You get to use your calculators for this one!
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7.13 Consider a noncoherent BFSK communication system with the receiver of Figure 7-18.
Letw; = 2nf; and g;(t) = py (1) fori = 0 and i = 1. The signals are of the form

5i(0) = V2 Acos@ufit + i) pr0),

for each value of 7. The signal s,(7) is referred to as the mark signal, and s, (¢) is called
the space signal. Assume that the two signals are orthogonal.

Suppose that thermal noise is negligible in this system, and the only noise that affects
the performance of the noncoherent receiver is bandlimited white Gaussian noise with
two-sided spectral density N, /2. This noise may be present at none, one, or both of
the frequencies used for the two signals. The bandwidth of this noise is sufficiently
large that, when it is present at a given frequency, it produces the same effect on the
corresponding branch of the receiver as white Gaussian noise would produce; however,
the frequencies f; and f) are sufficiently far apart that the presence of noise at frequency
Jo does not affect the space filter, and the presence of noise at frequency f; does
not affect the mark filter. In addition, the noise processes at the two frequencies are
statistically independent.

The presence or absence of noise at a given frequency is a random phenomenon. The
probability that noise is present at frequency fy is By, and the probability that noise
is present at frequency f) is 8;. The event that noise is present at f, is statistically
independent of the event that noise is present at f}.

Give an expression for P, , the probability that the receiver makes an error given that
the mark signal is transmitted. Also, give an expression for P, |, the probability that the
receiver makes an error given that the space signal is transmitted. These expressions
should be in terms of A, T', Ny, By, and 8;.

Explain how to solve the problem if the thermal noise is nor negligible. A detailed
solution is acceptable, but not required. It is sufficient to describe the steps needed to
obtain a solution.
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717 Define s(¢) by ,

S(t) = S](t, (0]) +32(tv (02)’
where
5i(t,0) =cos@rfit +6), 0<6 <2n,

fori = land i = 2. Suppose s(¢) is transmitted over a multipath channel that has
two paths. The differential propagation delay for these two paths is 1, so the received
signal is :
r(t) = Bi{cos@mfit + @) + cosQu fot + @)}
+ Baleos2nfi(f — w0) + ¢1] + cos[27 5 (2 — 1) + 5]

_ The parameters ; and 8, account for the propagation losses for the two paths.

(8) Show that this signal can be written as

r@) = I(fi)cosQrfit + 1) + Q(f)) sin@nfit + ¢;)
+1(f2) cosQn fot + @2) + Q(f2) sin(27fot + @5),

where I(f) = B+, cos(2x f 1) and Q(f) = By sinRx f 15) for —o00 < f<oo.

(b) Suppose that 8, = 8, = 1 / ~/2. Find values for 79, f1, and f, for which
IGA) =2 1(f) = 1/¥2, 0(f)) = 0,and O(f) = 1/v/3. ,

(c) For the values of 8,, B, o, Ji, and f, from part (b), show that the multipath
channel increases the amplitude of s, (r, @) by a factor of /2 (a factor of 2
increase in power). Show that it does not change the amplitude of s,(z, ¢,), but
it shifts its phase by 7 /4 radians. Thus, the effects of the channel are frequency
dependent for the parameter values in part (b).

(d) Suppose that 8, = S, J2 = 15Mhz, and 75 = 100 ns. What is the output of the
channel due to the transmitted signal 55 (7, @;)?

(e) Suppose 0 < f; < B and 1y < {fo = fil"!. Show that the effects of this
multipath channel are approximately independent of frequency by proving that
I(f2) > I(f1) and Q(f;) ~ Q(f) in the sense that |I(f;) — I(f,)| and
1Q(f2) — Q(f})| are each much smaller than B and Bs.

Hint: First show that
H(f) = 1(f)l < 2|B;sinln(fz ~ fi)w)|
and

1Q(f2) = Q(f)l < 2|Bssinlx (f2 — fi)wol-

() Supposeagainthatg, = 8, =1 /\/5. As an example for which 7y < | fo— fi],
suppose 7y = 1 usand f> — f; = 10kHz. Evaluate the bound on (L) —1(f)
given in part (e).




7.17 (a) Let r;(t) = B cos(2m fit + ;) + PBa cos[2m fi(t—T70) + gpz] for ¢ = 1,2 and notice that
r(t) = r1(t) + r2(t). From the identity cos[2m f;(t—70) + 901] = cos(2m fit + ;) cos(2m fimo) +
sin(27 f;t + ;) sin(27 f;7o), we obtain
ri(t) = [B1 + B2 cos(27 fi10)] cos(2m fit + ;i) + Basin(27 fito) sin(2m fit + ;).
Define the functions I and @ by I(f) = B1 + Becos(2nfro) and Q(f) = [esin(2x frp) for
—00< f<o0o. The two components of the received signal can be written as
r1(t) = I(f1) cos(2m fit + 1) + Q(f1) sin(27 fit + 1)

and
ro(t) = I(fa) cos(2m fot + w2) + Q(f2) sin(27 fot + ©2)

(b) f1 = 10Hz, f; = 12.5 Hz, and 7o = 0.1 s or f; = 10 kHz, fy = 12.5 kHz, and 7y = 0.1 ms,
etc. Several sets of values are possible. For either of the two given sets of values, fi7y = 1,
SO
I(f1) = Bi + B2 cos(2n) = By + B2 = V2 and Q(f1) = By sin(27) =0,
and forg = 5/4, so
I(f2) = By + Bacos(57/2) = 1 = 1/v/2 and Q(f2) = Fesin(5n/2) = By = 1/V/2.

(c) m(t) = V2cos(2m fit+p1) and ro(t) = (V/2/2) cos(2m fot+pg) +(v/2 /2) sin(27 fot +pa) =
cos[2x fot + g — (m/4)]. From the definitions of s; and s, it follows that 71 () = v/2s1(t, 1)
and r3(t) = sa[t, p2—(1/4)]. |

(d) famo = 3/2, so 2xforo = m (mod 2r), I(f2) = Py + Pacos(m) = By — B = 0, and
Q(f2) = Basin(m) = 0. Thus, ro(¢) = 0 for all ¢.

(&) 1(f2)— T(f1)| = 165 [cos(2m furo) — cos(2m fyro)]| = 216 sinlr(fof)ro] sinfr( )] <
2|Ba sin[m(f2— f1)7o)|. Simiarly, |Q(f2) — Q(f1)| = 2|Besin[m(f2— fi)7o] cos[m(fo+ fi)m]| <
2|82 sin[m(fo— f1)70]]. Because |fa— fa|ro < 1 and |sinz| < |z| for |z| < /2, then |I(fs) —
I(f1)] < 2|Bar(fa—fr)m0l < B2 < B1. Similarly, [Q(f2) —Q(f1)| < 2|Bem(fo—f1)m0| < Ba < Bi.
(Notice that as 79 — 0, I(f2) — I(f1) and Q(f2) — Q(f1))-

(f) Observe that 2|8 sin[r (fo—f1)70] = V/2sin(m/100) ~ 0.044, so [I(f2) —I(f1)| < 0.044 and
|Q(f2) —Q(f1)| < 0.044. For example, if fi = 1 MHz and f; = 1.01 MHz, then I(f;) = V2 =
1.41421 and I(fs) = [1 + cos(0.027)]/v/2 = 1.41282, so I(fy) — I(f1) =~ 0.0014 = 1.4 x 1073,
Note that for this example, |I(f2) — I(f1)| < 10731(fs) < 10731(f1), so [I(f2) — I(f1)] is very
small in comparison with either I(f;) or I(fs).




7.20 Consider the DBPSK signal given by

V2 A cos[(w, + wy)t 4+ Y, + @]

fornT <t < (n+1)T, which we refer to as pulse n. For DBPSK, the phase angles 1,
and v, for pulse n and pulse n — 1 satisfy v, = v, +n8,. The radian frequency w,
is the nominal carrier frequency, and the radian frequency wy is an unknown frequency
offset. If pulse n — 1 is delayed by T units of time, it is given by

V2 A cos[(@, + wo) (t — )+ Y1 + ol

The instantaneous phase difference (modulo 2) for pulse 1 and the delayed version
of pulsen — 1is

611 = [(Cl)(_ +w0)t+ w-n + §0] - [(wL +w0)(t - T) + w"—l + 90]
= o.T +wyT + Yy — an~l =T + l/f/l = V1.

The last step follows from w.T = 0 (modulo 257). Now use A, = 1, — Y1 = 7B,
to conclude the instantaneous phase difference is 6, = wyT + A, = wyT + 7f,, from
which we cannot recover the data j,, because w, is unknown. Without knowing wy,
we cannot determine whether §, = 1 or 8, = 0. For example, if 6§, = 7, the data
symbol could be B, =1 (if wg = 0) or B, = 0 (if wy = 7/ T). Since B, represents the
information that the transmitter is attempting to convey to the receiver, the conclusion is
that this information is not conveyed by DBPSK if there is an unknown frequency offset.

Now consider DDBPSK. The signal format is the same as for DBPSK, but the phase
modulation is given by ¥, = 2%,y — ¥,.o + [, where I, = A, — A,_; =
7w (B, — By—1). Assume that an initial data variable is known to both the transmit-
ter and receiver (i.e., always set f_; = 1 at the beginning of the message that is used to
convey By, B1, B2, - .. ). Examine the signal over three consecutive intervals, and show

that the difference of two consecutive values of the instantaneous phase difference (i.e.,
6, — 6,-) does convey the desired information, even if there is a unknown frequency
offset. Explain how this information is conveyed.



7.20 The phase difference for pulses n and n — 1 is

O, = [(we+wolt+tn+ ] —[(Wet+wo)(t —T)+vn1+ ¢
= WOT| + wn - wn—l = on + An

Similarly, the phase difference for pulses n — 1 and n — 2 is

On_1 = woT + Yn_1 — Yo = woT + Ap1.

The difference of two consecutive phase differences (the double difference) is
9n - en—l = An - Afn—l = W(ﬂn - ﬁn—l)a

which is independent of the frequency offset. We begin with the known value of f_;, which
is known to both the transmitter and receiver, and the double difference 6y — 6_; conveys
the value of 3. Then, the double difference 1 — 0y conveys the value of fi, since By is
known from the previous step. In the general step, the double difference 6,, — 6,1 conveys
the information in f,, because 3,_1 is known from the previous step.



;DQ‘

7.23 A standard binary, equal-energy, orthogonal FSK signal set {so, 51} is employed wi]

the receiver shown in Figure 7-4. In the absence of fading, the received signal is gi y
by s:(#) = «/Eﬂ cos(wit +@),0 <t <T,fori =0ifspissentori=1ifs, is sent
Assume that wp # o) and that wp and ) are multiples of 27/ T. The channel is a

AWGN channel with spectral density Ny/2.

(a) If the channel exhibits no fading, what is the probability of bit error? Answer'
terms of the appropriate function and the parameters 8, Ny, and T.

For parts (b)~(f), the channel is a nonselective fading channel for which the received sié
nal is modeled as V's;(¢). The random variable V is Gaussian with mean 0 and variancé

22, it is independent of X (¢), and it is independent of which signal is transmitted. -

(b) Give an expression for &y, the average energy per bit in the received signal. Your

answer must be in terms of the parameters 8, A, and T.

(¢) Derive an expression for P, q, the average probability of error when s, is sent

Express your answer in terms of the appropriate function and the parameters f
A, Np,and T,

(@) Define the parameter ¢ by ¢ = £/ Ny, and give an expression for P, g in te

of the parameter ¢ only.

For parts (e) and (f), suppose that 8 and N, are unknown. However, it is detemdn§ d
that if so is sent, then E{R2} = py and E{R?} = p,. For parts (€) and (f), you mus
express your answer in terms of the appropriate function and the parameters 0o, 01, and

A only. You may not use the parameters 8, Ny, or T in your answer.

(e) Give an expression for P, , the average probability of error when sy is sent.

(f) Give an expression for P, ;, the average probability of error when s, is.sent.
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8.1 Consider the communication system of Figure 8-1 with the input signal given by

s(t) = V2 Ad(t) cos(w.t + 6).

X (t) is white Gaussian noise with spectral density Ny/2. The filter is a single-pole RC
filter with impulse response

h(t) = (RC)™ ' exp(—t/RC) u(r),

where u(¢) is the unit step function: u(¢) =1, > 0; u(t) =0,¢ < 0.

(a)

(b)

(]

(d)

(e)

®

Show that the transfer funcﬁon for this filter is
H(f) =[1+j2nfRC]™", —oco< f < oo.

The 3-dB bandwidth, also known as the half-power bandwidth, is defined by
|H (fp)|* = |H(0)|?/2. Show that the 3-dB bandwidth for this filter is given
by fias = @rRC)™L.

Suppose d(t) = pr(t) is the input to this RC filter, and consider the signal at the
output of the filter. Show that Ty = T is the optimum sampling time if the goal
is to maximize the signal at the filter output.

Let d(¢) be the single pulse by pr(t), where by is either +1 or —1. Then the
transmitted signal s(¢) is time limited to [0, T']. Let the signal-to-noise ratio
be defined as in Chapter 5, and show that if the sampling time is 7y = T, the
signal-to-noise ratio satisfies

(SNR)? = (4A%/Ny) RC{1 — exp(=T/RC)}.

Let d(¢) be the baseband signal given by (8.1) with n; = —o0 and n, = +o0.
The baseband pulse waveform is B(t) = py(t). If d(z) is the input to the RC
filter, there will be intersymbol interference. Find the tightest possible upper and
lower bounds on d(T), the output signal at time Ty = T, if by = +1 and b, is
arbitrary for n # 0 (subject only to b, = %1). Your answer should be in terms
of T and the product of R and C.

From your bounds in part (e), determine the corresponding bounds on the output
signal-to-noise ratio, which is defined as the ratio of the output signal at the
sampling time to the standard deviation of the noise. First, express the bounds in
terms of RC, T, A, and Ny, and then give an equivalent expression in terms of
the time-bandwidth product 7 f54p and the energy-to-noise-density ratio £/N,
where £ is the energy per bit in the signal s(r).
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8.7 (a) Show that the raised-cosine frequency function

cos’(mf/2R), O0=<|f| <R,
0, otherwise,

G(f) =

satisfies Nyquist’s criterion for communication at a rate of R symbols per second.

(b) For each value of W in the range R/2 < W < R, prove.that the frequency

function
1, 0<|fl<R-W,
G(f) = {cos®{n(|fl+ W —R)/4W —2R)}, R—-W <|f|<W,
0, [fl>Ww,

satisfies Nyquist’s criterion for communication at arate of R symbols per second.



8.7(a) Because >0 __ G(f —nT™!) is periodic with period R = T, it suffices to prove

n=-—00

ot = — nR) = 0 for all n except
that Y oo G(f —nR) =cfor 0<f<R. For 0Sf<R, G(f—n ‘
n=0andn=1. so, it suffices to prove that G(f) + G(f — R) = c for 0< f < R. In this

range

= cos’ (%) + sin? (g—;;) =1

(b) First, observe that the definition of G(f) makes sense only if R < 2W. By the same
argument as in part (a), it suffices to prove that G(f)+G(f — R) = cfor 0< f<R. Observe
that for 0S f<R—-W, G(f) =1and G(f —R) = 0. For W< f <R, G(f) = 0 and
G(f — R) = 1. All that remains is to consider is the frequency interval R — W < f < W.
Since this interval is empty unless R <2W, we can assume that R<2W in all that follows.
Also, from the problem statement, we know that R/2 < W < R. We must prove that

G(f)+G(f—R) =1for R—W < f <W. Because f <W and W<R,then f~-R< W—-R <0.
It follows that |f — R| = R — f, so

G(f) + G(f - R) = cos® {g (W__‘}fﬂ + cos? {g (;3;‘_2)}.

Next, observe that :
2 [T ( WS\ _ o fm (=W _ o f7(f+W=-R\ «(2W-R
cos {2(2W—R)} - o8 {2(2W—R e\ sr 2 oW —R
— o2l (fEW R\ 7w _ o r(f+W-R
= COS{2<2W—R 2f T\ 2w =g ) [
Thus, if R— W< f<W and R<2W, then

G(f)+C(f - B) =cos2{g <f2—;’v_;;)} +sin2{g- (f—;VW—_‘;H _1

)}




8.9 The model for a baseband communication system is as shown in Figure 8-2. The
noise X () is white Gaussian noise with unknown spectral density. It is known that the
noise X (¢) at the filter output has autocorrelation function Ry () = 6exp(—3|z|). If
d(t) = pr(t) and there is no noise in the system, it is observed that Z(7, — T') = 0,
Z(Ty) =+1,Z(Ty+T) = 46, and Z(Ty + kT) = 0 for |k| > 1.

(a) Suppose that d(z) is &=pr(¢) and the objective is to make the minimax decision
as to whether the pulse is positive or negative. What is the optimum sampling
time 7, among the times of the form 7, = Ty + kT for some integer k?

(b) What is the probability of error for the reception of a single pulse using the sam-
pling time you chose in part (a)? Express your answer in terms of the function Q.

(¢) Give an expression for the average probability of error for the system if

d@t)y= ) bypr(t —nT)

n=-—00

and (b,) is a sequence of independent random variables with P(b, = +1) =
P (b, = —1) = 1/2 for each n. Express your answer in terms of the function 0
and the parameter T'.

(d) Give a block diagram for a three-tap linear transversal filter to insert after the
filter and before the sampler. Specify the tap gains that minimize the maximum
intersymbol interference. Label the diagram with the values for the gains and
delays, and specify the way that the decision is made in the threshold device.

(e) Find the variance B2 of the noise at the output of the equalizer of part (d).

(f) What is the average probability of error (averaged over all pulse patterns) for the
system with the equalizer described in part (g)? Express your answer in terms of
the function Q and the parameter 8 only.
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9.1 One period of the sequence x is 1001110.

(a) Find the periodic autocorrelation function for x.
(b) Find the odd autocorrelation function for x.

(¢) Find the odd autocorrelation function for each phase of x. You may want to use
Matlab or Excel.

(d) Based on your results in part (c), determine which phase of x has the smallest
value of the maximum odd autocorrelation function. This is known as the auto-
optimal (AO) phase of x. Specify the sequence that is the AO phase of x, and
give the maximum value for its odd autocorrelation function.



9.2 The sequence 1001110 of Problem 9.1 is employed in a binary, baseband DS spread-
\&‘Yr‘:}m system with chip rate 1/7,. The baseband channel has a direct path and one
reflected path, and the propagation time for the reflected path is 97, greater than for the

direct path. If the transmitted signal is s(¢), the input to a correlator matched to s(z) is

Y(t) =s(t) + 025t — 9T,) + X (1),

where X (¢) is white Gaussian noise with spectral density Ny /2. The correlator output is
compared with a zero-threshold in order to decide which binary symbol was transmitted.
The energy per bitin the signal s(¢) is £. Find the average probability of error, averaged
over all pulse patterns, if the transmitted data sequence is modeled as a sequence of
independent random variables, each of which takes value 41 with probability 1/2 and
—1 with probability 1/2. Express your answer in terms of the ratio £/N, and the
function Q.



9.3 The sequence x is as specified in Problem 9.1, and one period of the sequence y is
0111001. Find the periodic crosscorrelation function for x and y, the odd cross-
correlation function for x and y, and the aperiodic crosscorrelation function for x
and y.



ch{' C@v«are;cl On 'H7L€ F—ZOlS T:nw,l Exam.

9.1 (a) and (b)

j= 0 1 2 3 4 5 6

0.)= 7 -1 -1 -1 -1 -1 -1

()= 7 1 -5 -3 3 5 -1

(c)

X j= 0 1 2 3 4 5 6
1001110 8,(j)= 7 -5 -3 3 5 -1
0100111 4,(j)= 7 1 -1 1 -1 1 -1
1010011 G,(j)= 7 -3 -1 1 -1 1 3
1101001 6,(j)= 7 -3 -1 -5 1 3
1110100 G,(j)= 7 1 3 1 -1 =3 -1
0111010 6,(j)= 7 -3 3 -3 3 -3 3
0011101 6,(j)= 7 1 -1 -3 3 1 -1

(d) f40(z) = 1, and 0100111 is the auto-optimal phase. For the given sequence, the auto-
optimal phase is unique. : )

9.2 Assume that the pulse on the direct-path signal is positive. The four possible values
for the correlator output are ¢[7 £ 0.26,(2)] and ¢[7 £ 0.26,(2)] for some constant c. The
normalized values for the output are

1-4_-0.2€“;§—2) and 1:|:0.29$T(2).

From Problem 9.1 (a), we know that 6,(2) = —1 and 8,(2) = —5, so the four normalized
outputs are 1 £ (1/35) and 1 £ (1/7), which give 6/7, 34/35, 36/35, and 8/7.  The average
probability of error is

et B(/E) o)< (30E) o)

Suppose the differential propagation time is 27, instead of 97,. Is the preceding expression
still correct?

9.3 x corresponds to 1001110 and y corresponds to 0111001.

j= 0 1 2 3 4 5 6
Ooy()= -5 -1 -1 3 -1 3 3
boyi)= -5 -3 3 5 -1 -7 -1
Coyli)= -5 -2 1 4 -1 —2 1
Cowj—T)= 0 1 -2 -1 0 5 2

Note: By definition, Cy,(—7) = 0.



Description and Block Diagram for ProblemsSande

The block diagram shown is a possible implementation of a differentially encoded communi-
cation system.

The encoder accepts a binary (i.e., 0 or 1) string By at the input and produces a binary
string D;, at the output. The output string contains an extra digit D_;, which is set as an
initial condition of the encoder. The symbol “@” in the encoder denotes modulo 2 binary
addition (i.e., exclusive or).

The decoder takes a binary string input Dy, and produces a binary string output By
containing one fewer digit than the input. The digits are lined up so that ideally B, = By
fork=0,1,2,....

By, Dy, D%
k=0,1,2, ... Encoder k—=—1,0,1,.. | Symbolmap | .= ;4
pt 0 — +1
D;=B;®D;1 1 = -1
BPSK Modulator, Comm.
Chan., Carrier Recovery, In
BPSK Demodulator
X’c: - Dk;, Bky
k- 101, . ymboldemapl 77 , 0, £E=0,1,2,...
L » +1 = 0 p+ Decoder . >
-1 - 1
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Problems RS Consider the differentially encoded BPSK system described on
the previous page focussing on the Encoder and Decoder blocks.

(a) ﬂ The table below gives an example input string By. Assuming that the encoder

initial condition is D_; = 0 as shown, fill in the values for the encoded bits Dy, in the
indicated row of the table.

Time index k Dkz Bk® bh-]
-1 01 2 3 45 6 7 8 9
By|- 0110101001
D,/0 6V 60 1 1 0o ol
Dilo ot 60 v\ 06 o |
Bil- 01 L 0 1o \ 0 o1

(b) el The bits Dy starting from k = —1 are mapped to symbols, sent through the

channel, and then de-mapped to produce the estimated bit sequence Dj. Assuming
that no bit errors occur in transmission, fill in the row in the above table corresponding

to Dk.

Then give a mathmatical formula for the decoder and write down the estimated bit
sequence By in the above table.

”bk® Dh—l = FD,{@ ’Dh_‘ ‘\F wo c\mann_g_l errers

—_— (B&G)'DE_‘)@"D,Q,‘ cwhshitubing encoeder

cr‘mu.\a..
— B® (D ® i)
= B®O0

- E\_'——% Tn abseuse O'C Ckaune\ errels
Hee bid stream Is Parroduc&l.



Problem s (cont’d.)

(c) SR Repeat part (b) for the table shown below but now assume that the channel is
such that the bits Dy, are the complements of the corresponding bits Dy. Use exactly
the same decoder as you found in part (b). The table is repeated below. You will need
to fill the Dy row in with the same values as found in part (a).

Explain why the result you find is important in BPSK systems, which use either the
squaring loop or the Costas loop for carrier phase recovery.

Time index k

-1 01 2 3 45 6 78 9
B.|l- 0110101001
D,|0 o6 00| | 09000 |
Dilt te t it 66 t v 1L O
ék - 6t 10 Vv 0 v 0o

Chennel CromP\c_men‘LMj all  bite n FDlz. 1< w‘me."" ‘AQ'PPC"S

when

F‘aau cFCS‘d' o( .

Carriec re Cavary \oor locks ovt wh

a

Smu_ ’Ek-:: B'& n -Hn{s Catek wWe S€e<. {'k\a,‘t' A;rCe,geml-._;\

encading s mgensitive +o Pln.z..s.e. efCset



Problems (cont’d.)

(d) QN Repeat part (b) only now assuming that a single bit error is made in the
channel at time index k = 3, i.e., Dy = Dy, for k # 3 and D3 # Ds3. The position of
the bit error is indicated in the table below with a small box.

Comment on the result in light of what was found in the homework problem about
the probability of error performance of differentially encoded BPSK in comparison to
regular BPSK.

Time index k
-1 01 23 456 789
B,.|l- 0110101001
D0 o1 ©0 (1 06 o |
D@ o 1 ofl]1t1l oo ol
ék_OllO(oo!

A SmiLv_ chanunel errst Frcc(u.ca_s

‘hoo erreses e leCoA-eA LH—

Stream.
Tn Hw gaw tat Hee bit erree prab. of DRPSK,

was approx twice that of BPSK ab lugh SNR.
Aboue. & an W ws tration r:C w'::) s ',\QFPC_WS.



Problem ‘ _] This problem concerns just the encoder of the DBPSK system
given before. Suppose that the input bit string By, is independent and identically distributed
(iid.) with

P(By=1)=p and P(By=0)=1-p.

(2) WER Assuming that the encoder initial state is D_; = 0 find the marginal proba-
bility distribution of the encoder output for all time &, i.e., find

de
g = P(Dy=1)
for k > 0. Hint: Find a first order difference equation for g, and solve it.

(b) WS For general p, are the random variables {Dj : k > 0} identically distributed?
Are they statistically independent? You must prove or give a counter example.

(c) MBS For the special case of p = 1/2, are the random variables {Dy : k > 0}
identically distributed? Are they statistically independent? You must prove or give a

counter example.

(CQ D= BkG‘) Dy, Because of e (l.eFe,v\J_p.wcg on Pasl- ‘r\'\‘sl‘mzj
]"’ W\a.\(es Seunse. 4‘0 C—OV\A'IL‘Q.I'SY[ on e velue ef -Db—\ 1%}

deltermin g P (Dla =)

P(by=1) = P(De=\ | Doy =) P(Di=0) ¢ P (Dy=t [Py =1 P(Dey=t)
= P('Bh=\}((°%h4)'(— P(B{—“—OB 1“_‘

= o= p U=+ (o) e = p =~ pga ¥ Lt

= (\'—' 2‘\’31""‘ P

’nm< ln'u"'l.e‘.\ C_c-wil‘l-t,;.:-n FOL His cli{:Fe.cev\u_ eclua‘{-c;:-n l.g
CL__(’—‘— ’P(-D__l—:.() = O Stuce S't-qr*‘ L-..\‘H‘\ Fro‘:- (Y7 V- ST S{"o.'{’e

wln.ere_ -D_‘?— S . ’nﬂeu\ a\%o \f\cw-—e_ [Eo —1 F

Tc': So\u—e_ ‘H«z_ i{CC Qﬁiu\alﬂ,‘e—w we V\eei Oh}j Qa.r‘r:-s H‘ ou.'\'

@or a C&w S‘LQ_FS unkl «a \)a&e.m emerges .

Let a = (-2, f= shert ¢



Problem 6 (cont’d.)

(e S
2
ilz CL(QPi—P\i-F: O.Pi-cn-?e?
3
fa= «(Spreere) ve = S
Palbern is  clear:

%kz FZ‘__CLL

L-:O

Te 3@‘% o Wiee closed Corm we SLLQ-...li ‘Sth\I% Hee Swm,
Neote :

N - H ket nd 1 alnt
Z_ a': = —l-— . Z_ Of = & ‘Z. o

I

| —a
L =o L= ? c=kt\ t=e

‘ CL‘L.!—‘ l‘*O—LH ia‘

S | — e - l— a = N = .
k|
k
. L= |— o _ | — (1-2)
-5 | —<a ¥ \ -—(\—-Z.F)
le +1
- — — (\=2
P, L= (-2

(p) L+ s abuwus the D are wot identiaaly diskbribubed
3€vﬁ€1‘4‘ because. "-L\_L_ W\a.rs\m_c.\ FroBaL‘.\‘.-\q'e,s P(‘Dh:") AQE&A

on k.
For S{'d..l"IS‘l'lce.\ ‘“&CF&V‘A&“QQ S\"G.r'*' \D\LS tookm.g a'l.‘
P(De=l [Diy=e)  and POt [Dry=1)
7



Problem 6 (cont’d.)
T¢€ -Hr\e.b are S\“a.-l-:gl-ica(\_\j \V\LQP then Hia ﬁmi\g&al
Progqg;\;l.‘;_g sheuld wnot Ael;eml on tha cond; tusning
\qu'uq\o\.z_. _Bu.*' Ltere

/I

F<bh=\ lbh-\ =°5 P(Bk::{B =P + %L
FQDk:— l DQ_-\ =’~l) = P(Bkr-b) = \—-F ':l: %L

:° {.D\z_i VU:‘\‘ on mcLe‘,. rec(.

(Q) SPe_c‘\cp\ Ca s T = l/l_
T‘Aev\ 1* = I/L V k . NOUJ W\O-t‘swta,\ A.s"rr}lou.\'c&'ns of
Hee {’Dh} are identical

To show m<le.‘>e.v\4.a_u.ce_ of Heo gb;,:} Wt i QV\OLLSIA b
S\ﬁ—ow
P(bhzl [Dk—(tb) = P(bk-‘-‘ lb‘l_‘:‘\ = l/l..

SincCea {Dh.g s o lS‘l’ orie.r Ma.r“kev ‘;racess. OF Course,,
e above holds just as it did wm Par{" V).





