Lecture Summary – Module 1

Switching Algebra and CMOS Logic Gates

Learning Outcome: an ability to analyze and design CMOS logic gates

Learning Objectives:

- 1-1. <u>convert</u> numbers from one base (radix) to another: 2, 10, 16
- 1-2. <u>define</u> a binary variable
- 1-3. <u>identify</u> the theorems and postulates of switching algebra
- 1-4. <u>describe</u> the principle of duality
- 1-5. <u>describe</u> how to form a complement function
- 1-6. prove the equivalence of two Boolean expressions using perfect induction
- 1-7. describe the function and utility of basic electronic components (resistors, capacitors, diodes, MOSFETs)
- 1-8. <u>define</u> the switching threshold of a logic gate and identify the voltage ranges typically associated with a "logic high" and a "logic low"
- 1-9. <u>define</u> assertion level and <u>describe</u> the difference between a positive logic convention and a negative logic convention
- 1-10. <u>describe</u> the operation of basic logic gates (NOT, NAND, NOR) constructed using N- and P-channel MOSFETs and <u>draw</u> their circuit diagrams
- 1-11. define "fighting" among gate outputs wired together and describe its consequence
- 1-12. <u>define</u> logic gate fan-in and describe the basis for its practical limit
- 1-13. identify key information contained in a logic device data sheet
- 1-14. <u>calculate</u> the DC noise immunity margin of a logic circuit and describe the consequence of an insufficient margin
- 1-15. describe the consequences of a "non-ideal" voltage applied to a logic gate input
- 1-16. describe how unused ("spare") CMOS inputs should be terminated
- 1-17. describe the relationship between logic gate output voltage swing and current sourcing/sinking capability
- 1-18. describe the difference between "DC loads" and "CMOS loads"
- 1-19. <u>calculate</u> V_{OL} and V_{OH} of a logic gate based on the "on" resistance of the active device and the amount of current sourced/sunk by the gate output
- 1-20. <u>calculate</u> logic gate fan-out and identify a practical lower limit
- 1-21. <u>calculate</u> the value of current limiting resistor needed for driving an LED
- 1-22. describe the deleterious effects associated with loading a gate output beyond its rated specifications
- 1-23. define propagation delay and list the factors that contribute to it
- 1-24. <u>define</u> transition time and list the factors that contribute to it
- 1-25. <u>estimate</u> the transition time of a CMOS gate output based on the "on" resistance of the active device and the capacitive load
- 1-26. describe ways in which load capacitance can be minimized
- 1-27. identify sources of dynamic power dissipation
- 1-28. <u>plot</u> power dissipation of CMOS logic circuits as a function of operating frequency
- 1-29. plot power dissipation of CMOS logic circuits as a function of power supply voltage
- 1-30. describe the function and utility of decoupling capacitors
- 1-31. define hysteresis and describe the operation of Schmitt-trigger inputs
- 1-32. <u>describe</u> the operation and utility of a transmission gate
- 1-33. define high-impedance state and describe the operation of a tri-state buffer
- 1-34. <u>define</u> open drain as it applies to a CMOS logic gate output and calculate the value of pull-up resistor needed
- 1-35. describe how to create "wired logic" functions using open drain logic gates
- 1-36. <u>calculate</u> the value of pull-up resistor needed for an open drain logic gate

Lecture Summary – Module 1-A

Number Systems

Reference: Digital Design Principles and Practices (4th Ed.), pp. 25-34

- overview
 - \circ d_n digits of base R number
 - \circ c_n converted corresponding digits in base 10
 - \circ dealing with *unsigned* numbers only at this point \rightarrow leading zeroes don't matter
 - table of correspondence

N ₂	N ₃	N ₄	N ₅	N ₆	N ₇	N ₈	N ₉	N ₁₀	N ₁₆
0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
10	2	2	2	2	2	2	2	2	2
11	10	3	3	3	3	3	3	3	3
100	11	10	4	4	4	4	4	4	4
101	12	11	10	5	5	5	5	5	5
110	20	12	11	10	6	6	6	6	6
111	21	13	12	11	10	7	7	7	7
1000	22	20	13	12	11	10	8	8	8
1001	100	21	14	13	12	11	10	9	9
1010	101	22	20	14	13	12	11	10	Α
1011	102	23	21	15	14	13	12	11	в
1100	110	30	22	20	15	14	13	12	С
1101	111	31	23	21	16	15	14	13	D
1110	112	32	24	22	20	16	15	14	E
1111	120	33	30	23	21	17	16	15	F
10000	121	100	31	24	22	20	17	16	10

- integer conversion: base R to base 10
 - method: iterative multiply and add
 - o based on nested expression of a number
- integer conversion: base 10 to base R
 - method: iterative division
 - remainders become digits of converted number
 - quotient of zero indicates conversion is complete

Example: Convert (727)₁₀ to base 8

$$(d_{3}d_{2}d_{1}d_{0})_{R} = (N)_{10}$$

= $c_{3}xR^{3} + c_{2}xR^{2} + c_{1}xR^{1} + c_{0}xR^{0}$
= $(((c_{3}xR + c_{2})xR + c_{1})xR + c_{0})$

Example: Convert (4352)₈ to base 10

- short cut for conversion among powers of 2 (from base "A" to base "B")
 - method: size log₂R groupings
 - $\circ~$ write an n-digit binary number for each base A digit in the original number, where $n = log_2 A$
 - \circ starting at the least significant position, form m-digit groups, where m = $\log_2 B$

Example: Convert (136)₈ to base 2 and base 16

1	3		6
001	011	1	10
0101		1110	
5		E	

Therefore, $(136)_8 = (1011110)_2 = (5E)_{16}$

Exercise: Convert (110101)₂ to bases 8 and 16

6	5		
110	101		
110101			
0011	0101		
3	5		

Therefore, $(110101)_2 = (\underline{65})_8 = (\underline{35})_{16}$