Lecture Summary - Module 1
 Switching Algebra and CMOS Logic Gates

Learning Outcome: an ability to analyze and design CMOS logic gates

Learning Objectives:

1-1. convert numbers from one base (radix) to another: $2,10,16$
1-2. define a binary variable
1-3. identify the theorems and postulates of switching algebra
1-4. describe the principle of duality
1-5. describe how to form a complement function
1-6. prove the equivalence of two Boolean expressions using perfect induction
1-7. describe the function and utility of basic electronic components (resistors, capacitors, diodes, MOSFETs)
1-8. define the switching threshold of a logic gate and identify the voltage ranges typically associated with a "logic high" and a "logic low"
1-9. define assertion level and describe the difference between a positive logic convention and a negative logic convention
1-10. describe the operation of basic logic gates (NOT, NAND, NOR) constructed using N- and P-channel MOSFETs and draw their circuit diagrams
1-11. define "fighting" among gate outputs wired together and describe its consequence
1-12. define logic gate fan-in and describe the basis for its practical limit
1-13. identify key information contained in a logic device data sheet
1-14. calculate the DC noise immunity margin of a logic circuit and describe the consequence of an insufficient margin
1-15. describe the consequences of a "non-ideal" voltage applied to a logic gate input
1-16. describe how unused ("spare") CMOS inputs should be terminated
1-17. describe the relationship between logic gate output voltage swing and current sourcing/sinking capability
1-18. describe the difference between "DC loads" and "CMOS loads"
1-19. calculate V_{OL} and V_{OH} of a logic gate based on the "on" resistance of the active device and the amount of current sourced/sunk by the gate output
1-20. calculate logic gate fan-out and identify a practical lower limit
1-21. calculate the value of current limiting resistor needed for driving an LED
1-22. describe the deleterious effects associated with loading a gate output beyond its rated specifications
$1-23$. define propagation delay and list the factors that contribute to it
1-24. define transition time and list the factors that contribute to it
1-25. estimate the transition time of a CMOS gate output based on the "on" resistance of the active device and the capacitive load
1-26. describe ways in which load capacitance can be minimized
$1-27$. identify sources of dynamic power dissipation
1-28. plot power dissipation of CMOS logic circuits as a function of operating frequency
1-29. plot power dissipation of CMOS logic circuits as a function of power supply voltage
1-30. describe the function and utility of decoupling capacitors
1-31. define hysteresis and describe the operation of Schmitt-trigger inputs
1-32. describe the operation and utility of a transmission gate
1-33. define high-impedance state and describe the operation of a tri-state buffer
1-34. define open drain as it applies to a CMOS logic gate output and calculate the value of pull-up resistor needed
1-35. describe how to create "wired logic" functions using open drain logic gates
1-36. calculate the value of pull-up resistor needed for an open drain logic gate

Lecture Summary - Module 1-A

Number Systems

Reference: Digital Design Principles and Practices (${ }^{\text {th }}$ Ed.), pp. 25-34

- overview
- d_{n} - digits of base R number
- $\mathbf{c}_{\mathbf{n}}$ - converted corresponding digits in base 10
\circ dealing with unsigned numbers only at this point \rightarrow leading zeroes don't matter
- table of correspondence

\mathbf{N}_{2}	\mathbf{N}_{3}	\mathbf{N}_{4}	\mathbf{N}_{5}	\mathbf{N}_{6}	\mathbf{N}_{7}	\mathbf{N}_{8}	$\mathbf{N}_{\mathbf{9}}$	\mathbf{N}_{10}	\mathbf{N}_{16}
0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
10	2	2	2	2	2	2	2	2	2
11	10	3	3	3	3	3	3	3	3
100	11	10	4	4	4	4	4	4	4
101	12	11	10	5	5	5	5	5	5
110	20	12	11	10	6	6	6	6	6
111	21	13	12	11	10	7	7	7	7
1000	22	20	13	12	11	10	8	8	8
1001	100	21	14	13	12	11	10	9	9
1010	101	22	20	14	13	12	11	10	A
1011	102	23	21	15	14	13	12	11	B
1100	110	30	22	20	15	14	13	12	C
1101	111	31	23	21	16	15	14	13	D
1110	112	32	24	22	20	16	15	14	E
1111	120	33	30	23	21	17	16	15	F
10000	121	100	31	24	22	20	17	16	10

- integer conversion: base \mathbf{R} to base 10
- method: iterative multiply and add
- based on nested expression of a number
- integer conversion: base 10 to base \mathbf{R}
- method: iterative division
- remainders become digits of converted number
- quotient of zero indicates conversion is complete

Example: Convert (727) ${ }_{10}$ to base 8

$$
\begin{aligned}
\left(d_{3} d_{2} d_{1} d_{0}\right)_{R} & =(N)_{10} \\
& =c_{3} \times R^{3}+c_{2} \times R^{2}+c_{1} \times R^{1}+c_{0} \times R^{0} \\
& =\left(\left(\left(c_{3} \times R+c_{2}\right) \times R+c_{1}\right) \times R+c_{0}\right)
\end{aligned}
$$

Example: Convert (4352) s $_{8}$ to base 10
$4 \times 8+3=35$
$35 \times 8+5=285$
$285 \times 8+2=2282$

$$
5+1-1
$$

Therefore, $(4352)_{8}=(2282)_{10}$

- short cut for conversion among powers of 2 (from base " A " to base " B ")
- method: size $\log _{2} R$ groupings
- write an n-digit binary number for each base A digit in the original number, where $\mathrm{n}=\log _{2} \mathrm{~A}$
- starting at the least significant position, form m-digit groups, where $\mathbf{m}=\log _{2} B$

Example: Convert (136) $)_{8}$ to base 2 and base 16

1	3	6
001	011	110
0101		1110
5		E

Therefore, $(136)_{8}=(\underline{1011110})_{2}=(\underline{5 E})_{16}$

Exercise: Convert $(110101)_{2}$ to bases 8 and 16

6	5
110	101
110101	
0011	0101
3	5

Therefore, $(110101)_{2}=(\underline{65})_{8}=(\underline{35})_{16}$

