EE662: Pattern Recognition
Homework 2

Sahm Litkouhi

Collaborators: Thomas Chen
April 1st, 2008

Problem 1:

In the Parametric Method section of the course, we learned how to draw a separation hyperplane between two classes by obtaining w0, the argmax of the cost function J(w) = wTSBw / wTSww. The solution was found to be [image: image2.png]@ = 5,1 (my —my)

 , where m1 and m2 are the sample means of each class, respectively.

Some students raised the question: can one simply use J(w) = wTSBw instead (i.e. setting Sw as the identity matrix in the solution w0? Investigate this question by numerical experimentation.
Response
To gain insight into this question, it is necessary to take a closer look at the cost function J(ω).
[image: image3.png]w'Spw _ Ml (my —m,)II*

/() = 35 o Tppergll o G — mITP

In the numerator, the vector between the two means is projected onto ω. The numerator is therefore maximal when ω is parallel to [image: image5.png](my—my)

. This factor encourages a separation hyperplane perpendicular to the vector joining the two means.

In the denominator, the deviation of each point from its class mean is projected onto ω. After squaring, all the terms from each class are summed. This denominator is minimized when ω is chosen such that the deviations, after projection onto ω, are minimal. This has the effect of clustering data belonging to the same class closer to each other, making the discriminant function more effective.

The Fischer Linear Discriminant was applied to a simple set of data to illustrate the behavioral differences when Sw is neglected from the cost function.

[image: image6.emf]0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

Figure 1: Class 1 represented by x, Class 2 represented by o, large X and large O are the class means. The blue separation hyperplane was determined including Sw, the red one was determined with Sw = I.

The normal vector ω is given by [image: image8.png]St (my —my)

. If Sw = I, then[image: image10.png]

. In Figure 1, the red hyperplane is indeed perpendicular to ω. As we can see, in this scenario it is clearly suboptimal, because while such an ω maximizes the difference between the class means in the discriminant function, it does not take advantage of the fact that the data could be packed very closely if it was projected along an ω perpendicular to their general alignment. The blue hyperplane, formed with the inclusion of Sw, clearly does take advantage of this. While the means will not be as far separated, the within class scattering is very low, packing classes tightly together for far superior performance.
These results are further generalized with multivariate normal random variables in Figure 2.

[image: image11.emf]-14 -12 -10 -8 -6 -4 -2 0 2 4

-4

-2

0

2

4

6

8

10

Separation Hyperplanes Using Fischer Linear Discriminants

Figure 2: The same behavior observed in a set of training samples with a multivariate normal distribution.
For situations where the training data happen to be scattered evenly in all directions around the class means, Sw-1 approaches the identity because the orientation of ω will no longer influence the denominator of the cost function. Theoretically speaking, using Sw always yields better separation. However, there are some very special (and unusual) cases where the inversion of Sw is unstable or impossible. One such example was encountered while working to form Figure 1. If the data points were arranged on lines with exactly identical slopes, then the denominator of the cost function after selecting ω becomes 0. This creates singularities in Sw. With sufficiently large data sets with well-chosen feature vectors, this behavior is highly unlikely.
P1

close all
clear y1 y2
% % Generate Data
y1 = [0:6];
y1 = [y1;y1]';
y2 = [5:11]*4/5;
y2(2,:) = [0:6];
y2 = y2';
figure
hold on
plot(y1(:,1),y1(:,2),'kx','markersize',10)
plot(y2(:,1),y2(:,2),'ko')
% % Calculate 'Within Class Scatter Matrix'
Sw = zeros(size(y1,2));
m1 = mean(y1);
m2 = mean(y2);
plot(m1(1),m1(2),'kx','markersize',15)
plot(m2(1),m2(2),'ko','markersize',15)
for i = 1:size(y1,1)
 y = (y1(i,:) - m1)';
 Sw = y*y' + Sw;
end
for i = 1:size(y2,1)
 y = (y2(i,:) - m2)';
 Sw = y*y' + Sw;
end
% % Find w that defines the optimal linear projection line
w = Sw^-1*(m1-m2)';
% % Draw Separation Hyperplanes
y = linspace(0,6,1000);
w = w/norm(w);
w0 = w'*(m2 + m1)'/2;
x = (w0 - w(2)*y)/w(1);
plot(x,y,'b-')
wb = (m2 - m1)/norm(m2-m1);
w0 = wb*(m2 + m1)'/2;
x = (w0 - wb(2)*y)/wb(1);
plot(x,y,'r-')
% % Now experiment with normally distributed feature vectors
figure
hold on
theta = pi*rand;
mu1 = [7 7]
mu2 = [2 2]
sigma = diag([1 10])
R = [cos(theta) -sin(theta); sin(theta) cos(theta)];
X1 = []
for i = 1:50
X1 = [X1; mvnrnd(mu1,sigma)];
end
X2 = []
for i = 1:50
X2 = [X2; mvnrnd(mu2,sigma)];
end
X1 = X1*R';
X2 = X2*R';
plot(X1(:,1),X1(:,2),'kx')
plot(X2(:,1),X2(:,2),'ko')
axis tight
axis equal
% % Calculate 'Within Class Scatter Matrix'
Sw = zeros(size(X1,2));
m1 = mean(X1);
m2 = mean(X2);
plot(m1(1),m1(2),'kx','markersize',15,'linewidth',3)
plot(m2(1),m2(2),'ko','markersize',15,'linewidth',3)
for i = 1:size(X1,1)
 y = (X1(i,:) - m1)';
 Sw = y*y' + Sw;
end
for i = 1:size(X2,1)
 y = (X2(i,:) - m2)';
 Sw = y*y' + Sw;
end
% % Find w that defines the optimal linear projection line
w = Sw^-1*(m1-m2)';
% % Draw Separation Hyperplanes
V = axis;
y = linspace(V(3),V(4),1000);
w = w/norm(w);
w0 = w'*(m2 + m1)'/2;
x = (w0 - w(2)*y)/w(1);
plot(x,y,'b-')
wb = (m2 - m1)/norm(m2-m1);
w0 = wb*(m2 + m1)'/2;
x = (w0 - wb(2)*y)/wb(1);
plot(x,y,'r-')
title('Separation Hyperplanes Using Fischer Linear Discriminants')
Problem 2:
Obtain a set of training data. Divide the training data into two sets. Use the first set as training data and the second set as test data.

a) Experiment with designing a classifier using the neural network approach.

b) Experiment with designing a classifier using the support vector machine approach.

c) Compare the two approaches.
Obtaining Training/Testing Data
Data was obtained from LIBSVM at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ . The set entitled ‘svmguide1’ was adapted into MATLAB and used. This set originated from an application related to astroparticle identification. There are 2 classes, 4 features, 3089 training data and 4000 testing data. To accelerate the training algorithms, only 100/3089 of the training data were used. This data set was used for all remaining problems in the assignment.
Classification with Neural Networks
For classification using Artificial Neural Networks (ANN), an ANN classifier for MATLAB from ANN:DTU Toolbox at http://isp.imm.dtu.dk/toolbox/ann/index.html was used. The algorithm is very advanced and has a large variety of design features. A neural classifier for multiple class data was used. As described, this algorithm has a two-layer feed-forward neural network with a hyperbolic tangent function for the hidden layers and a softmax function for the output layer. These outputs, interpreted as probabilities, are optimized with a maximum a posteriori approach involving a cross-entropy error function modified by a Gaussian prior across the weights. This toolbox gives the user flexibility over the amount of hidden layers.
The ANN was trained with 100 samples and tested with 4000. The error rate was then computed over different quantities of hidden layers, shown in Figure 3. The best performance was an error rate of 4.28%, achieved using 16 hidden layers. However, from inspecting the plot, 6 hidden layers would be a better choice, yielding a comparable error rate with less complexity. Beyond 6 layers, the performance does not experience a significant trend of improvement.
[image: image12.emf]0 2 4 6 8 10 12 14 16 18 20

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

Number of Hidden Layers

Error Rate %

Figure 3: Error Rate of ANN classifier as a function of the amount of hidden layers.
Classification with Support Vector Machines
In order to find the separation hyperplane using SVM, the following equation was optimized for the training data yi:
[image: image13.png]Lz
P+ kY g

[image: image14.png]subjectto ¢ y; =1 —¢,V,

Where k is a constant, [image: image16.png]

 is a slack term, d is the number of data, and [image: image18.png]

 defines the hyperplane.
The functions ‘svmtrain’ and ‘svmclassify’ were used from MATLAB’s bioinformatics toolbox. However, the first run using these functions produced undesirable results with high error rates. After reading a discussion concerning the effective use of SVM at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf , several preprocessing steps were introduced to procure acceptable performance. This involved scaling and translating the training data to map each dimension into the range [-1,1]. The same linear map was used as a preprocessing step for the testing data. Furthermore, instead of the default linear kernel, the Gaussian radius basis function kernel (RBF) was used to non-linearly map the samples into a high dimensional space. According to the discussion, this generally yields better performance as long as the feature dimensions are not excessive.
Using these steps, the SVM method classified 4000 test samples with an error rate of 6.425% . Alternatively, when the linear kernel was used instead of the RBF kernel, the error rate shot up to 42%, indicating that the RBF kernel is a much more effective model for this data set.
Neural Networks vs. Support Vector Machines
Each classifier, though wildly different in structure, yielded relatively close levels of performance. The neural networks were slightly more accurate, but on the other hand are more computationally intensive. After training, the SVM method is executed through matrix multiplication, while the ANN method is executed through a series of multiplies, adds, and non-linear transformations (such as the hyperbolic tangent function). Regarding the design and understanding of these two techniques, neural networks are relatively unintuitive whereas support vector machines are easier to conceptualize.
P2 ANN

clear all; close all; clc;
load svmguide;
trainingsize = 100;
x = [trainclass1(1:trainingsize,:); trainclass2(1:trainingsize,:)];
t = [ones(trainingsize,1);2*ones(trainingsize,1)];
x_test = [testclass1(:,:);testclass2(:,:)];
t_test = [ones(2000,1);2*ones(2000,1)];
% Nh = 10; % Number of hidden units
errors = zeros(20,1);
for Nh=1:20
 results = nc_main(x,t,x_test,t_test,Nh);
 classes = results.t_est_test;
 error = (classes ~= [ones(2000,1);2*ones(2000,1)]);
 errors(Nh) = sum(error)/length(error)*100;
end
plot(1:20,errors)
minerr = min(errors);
P2 SVM

clear all; close all; clc;
load svmguide;
trainingsize = 100;
Training = [trainclass1(1:trainingsize,:); trainclass2(1:trainingsize,:)];
Group = [ones(trainingsize,1);2*ones(trainingsize,1)];
% % Scale the training vector
d = (max(Training) - min(Training))/2;
for i = 1:size(Training,2)
 Training(:,i) = Training(:,i)/d(i);
end
m = max(Training);
for i = 1:size(Training,2)
 Training(:,i) = Training(:,i) - m(i) + 1;
end
%%%
option = optimset('MaxIter',1e9);
SVMStruct = svmtrain(Training, Group, 'Kernel_Function', 'linear', 'QuadProg_Opts',option);
Testing = [testclass1;testclass2];
% % Scale the testing vectors
for i = 1:size(Testing,2)
 Testing(:,i) = Testing(:,i)/d(i);
end
for i = 1:size(Testing,2)
 Testing(:,i) = Testing(:,i) - m(i) + 1;
end
%%%
classes = svmclassify(SVMStruct,Testing);
error = (classes ~= [ones(2000,1);2*ones(2000,1)]);
percent_error = sum(error)/length(error)*100;
Problem 3:
Using the same data as for question 2 (perhaps projected to one or two dimensions for better visualization),
a) Design a classifier using the Parzen window technique.

b) Design a classifier using the K-nearest neighbor technique

c) Design a classifier using the nearest neighbor technique.

d) Compare the three approaches.

Simplifying the Data
The original data had a 4 dimensional feature space. For better visualization, the data is projected onto a 2 dimensional feature space by extracting only the last 2 features. Figure 4 below shows the training samples (1000) and Figure 5 the testing samples from each class in this new space.
[image: image19.emf]-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0

20

40

60

80

100

120

140

160

180

Figure 4: Training samples from classes 1 (red) and 2 (blue) in the new 2-dimensional feature space.
[image: image20.emf]-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0

20

40

60

80

100

120

140

160

180

Figure 5: Testing Samples in the new 2 dimensional space
Classification with Parzen Window technique

The Parzen Window technique for classification attempts to estimate the probability of each class at the location of the test sample in question. This is accomplished by convolving a kernel centered at the test sample with the training samples. Generally, training samples closer to the point of evaluation are weighted more heavily, and this weight decreases for training samples further away. There are many different types of kernels that can be used, but for this experiment the circr([image: image22.png]-l

) function was chosen. This function is unity with a radius r of [image: image24.png]-l

 and 0 outside of r. After the probability estimations have been made for each class, the class with the largest probability is used to classify the test sample. Prior to using this kernel, the test samples were preprocessed as in the SVM method to scale each dimension to the range [-1 1].
This experiment was run for many different values of r, yielding error rates in the table below. Note that the values of r are obtained after the preprocessing.
	r
	.01
	.02
	.1
	.15
	.2
	.5
	1
	5

	% error
	74.4
	45.4
	16.2
	15.8
	15.8
	20
	24.4
	100

Figure 6: Table of Error Rates for various values of R
The best choice of r is closely dependent on the size and spread of the training set. If the set is dense, then r will generally be smaller. If the set is spread apart, r will be larger.
Classification with K-Nearest Neighbor and Nearest Neighbor (K = 1) techniques
The K-Nearest Neighbor (KNN) classification technique is based around using a distance metric, generally Euclidean distance, to find the K training samples that are nearest to the point being classified. Usually K is odd, and therefore the class of the sample in question is determined to be the class with the majority of those K neighbors. In this case, the Nearest Neighbor classification is a special case of KNN.
The algorithm used is relatively simple and is based off of several modifications to the KNN classifier MATLAB function at http://homepages.cae.wisc.edu/~ece539/matlab/ . The first and most important difference is that each dimension is first scaled into the range [-1, 1] so that the Euclidean metric does not penalize dimensions with features that are quantitatively larger. This scaling is identical in nature to the scaling used in SVM and is based off of the training data, but used on both the training and the testing data. Another modification allows this experiment to track each point that is misclassified to produce some interesting plots.
First K is varied from 1 to 25 and its effect on the classification error rate is recorded in Figure 7. It is clear that the nearest neighbor technique (k = 1) has the worst performance with an error rate of 22.3%. At k = 13 the error rate drops to 15%, which is not bad considering how close the two classes are packed together.
[image: image25.emf]0 5 10 15 20 25

0

5

10

15

20

25

Classification error rate vs. k

k -nearest neighbors

% classification error

Figure 7: Error rate of kNN with respect to k.

The next set of figures shows the misclassified test samples over several values of k.

[image: image26.emf]-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0

20

40

60

80

100

120

140

160

180

k = 1

Figure 8: Test samples that were misclassified for k = 1.

[image: image27.emf]-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

40

60

80

100

120

140

160

180

k = 5

Figure 9: Test samples that were misclassified for k = 5.
[image: image28.emf]-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

40

60

80

100

120

140

160

180

k = 15

Figure 10: Test samples that were misclassified for k = 15.
In observing these figures and comparing to Figure 4 and Figure 5, it is visible that points tend to be misclassified when they stray too far from their companions into territory dominated by the other class. This makes intuitive sense.
Parzen Windows vs. KNN vs. NN

Computationally, the most simple classification method is the nearest neighbor method since it need only find the closest training sample to make a decision. However, it also had the highest error rate. The Parzen window and the KNN method had error rates that were nearly the same. Computationally, they are also likely to be on par with one another since they each search for and compute for a collection of neighboring points. The performance of these classifiers depends heavily on the nature of the data, so additional and more extensive experiments would be required to determine whether the Parzen window or KNN is better. The nearest neighbor method would be effective and efficient for data that is well clustered with clear boundaries. If the classes are more heavily mingled, either the Parzen window or KNN classifier should be used.
P3

close all; clear all; clc;
load svmguide
%only use 2 dimension of data all same size
train1 = trainclass1(1:1000,[3 4]);
train2 = trainclass2(1:1000,[3 4]);
test1 = testclass1(1:1000,[3 4]);
test2 = testclass2(1:1000,[3 4]);
figure(1)
hold on;
plot(train1(:,1),train1(:,2), 'ro');
plot(train2(:,1),train2(:,2), 'b+');
title('
figure(2)
hold on;
plot(test1(:,1),test1(:,2),'ro');
plot(test2(:,1),test2(:,2),'b+');
% % Scale the training vector
train = [train1; train2];
d = (max(train) - min(train))/2;
for i = 1:size(train,2)
 train(:,i) = train(:,i)/d(i);
end
m = max(train);
for i = 1:size(train,2)
 train(:,i) = train(:,i) - m(i) + 1;
end
train1 = train(1:end/2,:);
train2 = train(1+end/2:end,:);
%%%
% % Scale the testing vector
test = [test1; test2];
for i = 1:size(test,2)
 test(:,i) = test(:,i)/d(i);
end
for i = 1:size(test,2)
 test(:,i) = test(:,i) - m(i) + 1;
end
test1 = test(1:end/2,:);
test2 = test(1+end/2:end,:);
%%%
Tr = [zeros(1,1000), ones(1,1000)]';
% KNN
Pr = [train1; train2];
Pt = [test1; test2];
for k=1:25,
 [Cmat,C_rate(k),class]=knn(Pr,Tr,Pt,Tr,k);
 perror{k} = find([class(1:end/2,1); class(1+end/2:end,2)]);
end
figure(3),clf
stem([1:25],100-C_rate),title('Classification error rate vs. k')
xlabel('k -nearest neighbors')
ylabel('% classification error')
load svmguide
%only use 2 dimension of data all same size
train1 = trainclass1(1:1000,[3 4]);
train2 = trainclass2(1:1000,[3 4]);
test1 = testclass1(1:1000,[3 4]);
test2 = testclass2(1:1000,[3 4]);
Pt = [test1; test2];
figure(4),clf
hold on
perror1 = perror{1}(find(perror{1} <= 1000));
plot(Pt(perror1,1),Pt(perror1,2),'ro');
perror2 = perror{1}(find(perror{1} > 1000));
plot(Pt(perror2,1),Pt(perror2,2),'b+');
figure(5),clf
hold on
perror1 = perror{5}(find(perror{5} <= 1000));
plot(Pt(perror1,1),Pt(perror1,2),'ro');
perror2 = perror{5}(find(perror{5} > 1000));
plot(Pt(perror2,1),Pt(perror2,2),'b+');
figure(6),clf
hold on
perror1 = perror{15}(find(perror{15} <= 1000));
plot(Pt(perror1,1),Pt(perror1,2),'ro');
perror2 = perror{15}(find(perror{15} > 1000));
plot(Pt(perror2,1),Pt(perror2,2),'b+');
