
Study of feature ranking using Bhattacharyya

distance

Daniel Rugeles
drugeles@purdue.edu

May 2012

Abstract

In this document, we study how a ranking of features could help im-
proving an optimized KNN classifier. For the the K-Neirest Neighbor
classifier (KNN) we optimized the K value, the Lp norm and the weight-
ing function for a particular dataset.

1 Introduction

An anonymous company is trying to find the best classifier for some data that
they have collected. In the course ECE662 Pattern Recognition taught by Pro-
fessor Mireille Boutin. Students have agreed to have a contest using the men-
tioned data. The purpose of this contest is to practice the theory studied in
the course and at the same time help the company finding the most accurate
classifier using this data. For information about the data, see section 2.

In the present work, we study how to get the most accurate classification us-
ing KNN Classifier. For this, we have decided to optimize KNN classifier using
different selections of the features provided. The feature selector is presented in
section 4. The considerations for optimizing KNN are presented in 5 and the
experiments done are presented in 6.

Motivation for this work, comes from the idea of testing the competitiveness
of KNN against other methods. For this, we optimize several parameters of
the KNN Classifier and we compare the result against classifiers from other
students. Results from the whole class can be found at:
https://www.projectrhea.org/rhea/index.php/Hw3 ECE662 S12.

2 Data used in this work

The data provided comes from a five-class classification problem using 13 fea-
tures. The training data consists of 550 data points (i.e. 550 points in a 13

1

dimensional space) along with the correct label for each point. The number of
labels correspond to the number of classes, in this case five classes.

3 KNN Classifier

KNN classifier is a geometric based classifier in the area of Statistical Pattern
Recognition. Like other Statistical Classifiers, the goal is to find a decision
hypersurface that will define the class of an unknown element. Unlike other
statistical classifiers, geometric based classifiers decision boundaries are con-
structed directly from the data or the features without using the information of
the class conditional densities. By instance we mean one point in a particular
space given in the training set.

KNN classifier operate on the premise that classification of unknown in-
stances can be done by relating the unknown instance to the known instances
according to some distance/similarity function, see 5.2. Intuitively, instances
in the space who are closer according to a distance metric are more likely to be
in the same class. So that, when an unknown instance needs to be classified.
There is only need to check for the classes of the closest point to the unknown
instance. In other words, the K neirest neighbors (K ≥ 1).

Differently from other classifiers such Neural networks, KNN classifier does
not abstract any information from the training data during the learning phase.
Learning is merely a question of querying the training data at the time of clas-
sification. There exists three parameters that we can change according to our
selection of the KNN classifier. The metric, the value of K, and the neighbor
weighting.

It is expected that more robust models for a KNN classifier can be achieved
by optimizing the number K of neighbours and letting the majority vote de-
cide the outcome of the class labelling. A higher value of K should result in a
less locally sensitive outcome. The metric should be choosen so that the way
the data the way the classes are distributed in space will match the shape of
the equidistance curves for our defined metric. An intuitive picture about this
equidistances is shown in figure 1. The weighting function should give a measure
of how important is the vote. Closest neighbors should have more importance
when voting.

4 Feature Ranking and aggregation

Features can be ranked according to how much information they provide about
the labeled classes. In this document, we use the Bhattacharyya distance ap-

2

Figure 1: Unit distance for the mankowski metric

proach. The Bhattacharyya distance is a common method for measuring the
separation between two multivariate gaussians. Therefore, we will have to use
this method based on the assumption that data is drawn from a Gaussian dis-
tribution. Because we have five classes in our data, we first estimate a Gaussian
distribution from which the data is drawn, then we calculate all the possible
combinations among the classes. Finally we add all this distances to produce
a ranking for each feature. The Bhattacharyya distance for two multivariate
distributions P1 and P2 can be calculated as follows:

BhatDistance(P1, P2) =
1

8
(m1−m2)

T
P−1 (m1−m2)+

1

2
ln

(
detP√

detP1detP2

)
P = P1+P2

2

Once we found a way to order the importance of each feature. We proceed to
do an aggregate composition of the features as follows. First, we test using only
information of the highest ranked feature, then we test using the information
of the highest and the second highest feature, we repeat this procedure until
we use the information from all the given features. We will call this process
Aggregation of features.

The ranking found for this data will be posted in the result section 7.
Intuition indicates we should have an improvement as we use more features in
the classifier, we will discuss about this in the conclusions section. 10

5 Optimizing the KNN Classifier

First, let’s define the parameters that we can optimize in a KNN classifier.

• K number of neighbors.

• Distance Metric used.

• Neighbor Weighting.

5.1 K number of neighbors

K could be any integer value greater than 0. We have chosen to test the range
from 1-19 neighbors. For each number K we fix other KNN parameters and we

3

record the percentage of successes. More explanation about the trials made are
explained in section 6.

5.2 Metrics

A metric is a function that defines a distance between elements of a set. For
optimizing the metric, we have fixed the KNN parameters for each metric.

A metric on a set S is defined as a function

d : S x S→ R
Such that ∀x, y ∈ S:

1. d(x, y) ≥ 0

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z). Also known as the triangle inequality.

R is the set of real numbers.

In the literature, examples of metrics are the euclidean distance, the manhat-
tan distance (Both are special cases of the Minkowski metric) and the Canberra
distance. Implementations of this distances can be found in [6].

We will study how to optimize the family of Lp norm metrics, or Minkowski
metrics. We will not prove this metrics, but we will use them to study their
effect in finding our hypothesis. In specific we will study:

• L 1
2
, L 1

4

• L1 Norm, also known as manhattan distance.

• L2 Norm, also known as euclidean distance.

• L4 Norm, L8 Norm.

• limp→∞ Lp Norm, also known as maximum distance and supremum norm.

4

where

Lp=

(
n∑
i=1

|xi + yi|p
)p

To get an intuitive idea, figure 1 shows the unit distance in RxR for different
values of p

To design your own distance function you can use the proxy package available
in R packages via CRAN see [4]. Proxy not only has a large number of pre-
specified metrics, but it provides a framework for specifying your own distance
function that is called from compiled code and thus it is reasonably fast.

5.3 Neighbor’s Weight

Neighbor’s weight represent how much importance do we give to the vote of the
neighbors, when using a KNN Classifier, one approach will be using the same
weight for all the neighbors, as they will just provide a vote given their labeled
class. This kind of weighting is called uniform weighting.

wi = 1

Where wi is the weight assign to the ith neiresth neighbor and di is the dis-
tance from the test sample to the ith nearest neighbor using the specified metric.

Another common approach is using the inverse distance weighting. It is very
intuitive as less weight is assign to instances with farther distances [3]. In other
words, a farther instance implies less knowledge about the unknown instance.

wi = { 1
di

if di 6= 0

Another approach could be an adaptive gaussian function. It is called adap-
tive because its parameters will depend on the distance of the K neighbors. In
this document we set the mean of the Gaussian to be the position of the point
that we are querying and the variance to be the distance to the K/2 neighbor
so that if the K neighbor is to far away its value will be exponentially lower.
Next, we show the function used to compute the weight for the vote of the X
neighbor.

f(X) =
1

(2π)n/2 det(Σ)
1
2
exp−

(
1
2(x− µ)

T (Σ)−1(x− µ)
)

where f(X) represents the weight of X, X is a vector in R13 representing the
known neighbor instance µ is the coordinate of the unknown distance and Σ
is the set of variances in matrix form that will define how quickly the weights

5

will vanish.Σ depends directly on the distance of X to the point that we are
classifying.

In this work we have tested the three weighting functions mentioned above.

• Uniform Weighting

• Inverse distance weighting

• Adaptive gaussian weighting

For each one of this, we have fixed the other parameters of the KNN classifier.
In the next section all the experiments trials are explained.

6 Experiment

We will perform 13x19x7x3x3 trials of experiments for the KNN classifier.
The five testing variables correspond to:

• 13 different aggregation of the features.

• 0 ≤ K ≤ 20 neighbors.

• 7 distance metrics. L 1
2
, L 1

4
, L1,L2, L4 L8, and limp→∞ Lp Norm.

• 3 weighting functions.

• 3 different cross validation test.

The amount of trials is a large number, dynamic programming is used to
reduce the computational load. The code is presented in A.

In every cross validation trial about 33% of the training data was used for
testing and 66% was used for training. The results were averaged over the cross
validation tests and they are presented in the next section.

7 Training Results

First, let us show the results from ranking the features.

feat 1 feat 2 feat 3 feat 4 feat 5 feat 6 feat 7
0.29 0.47 0.38 0.14 0.19 0.34 0.37

feat 8 feat 9 feat 10 feat 11 feat 12 feat 13
0.56 0.87 0.73 0.11 0.19 0.18

Table 1: Results averaged over cross validation tests.

6

This results imply that feature 9, feature 8 and feature 10 have better prob-
ability of discriminating among classes.

Figure 2: Statistical significance of the results for the experiments explained in
section.The percentages represent how many samples were correctly classified.
Feature value represent the number of aggregated features.

In the following table, we will present the results of aggregating features.
The table contains the statistical representation of the results for every experi-
ment explained in the previous subsection. We clarify that feature ith does not

7

mean that we classify using the information of the ith feature, it means that we
used the ith ranked feature and higher ranked features as well. We also clarify
that each row is drawn from 19x7x3 trials of KNN. The study of Lp norm, and
K value in Optimal KNN is covered in previous studies in the course. knnoptimal

The following figures provide a visual representation of the data given in the
table.

Figure 3: Results for the Gaussian weighting function

8

Figure 4: Results for the inverse distance

Figure 5: Results for the voting function

The following figure compares the maximum values from the previous two
figures, the idea is to study the stability and the relative process of aggregating
features using the three weighting features. See the next section for reviewing

9

our conclusions.

Figure 6: Comparisons of the results for the three weighting functions. This
image also shows an overall behavior of feature aggregation

8 Final Decision for testing

For the given data we choose K=14. From results not presented in this work.
It is not hard to see that K ≤ 7 produce the lowest accuracies, in average the
best values are around K=14 and they decrease unevenly after K=15.

For the given data we choose the Lp norm as a distance metric with p being
equal to 1/2. It can be seen that, in general, when p=1/2 or close values there
is always above 75th percentile ranked accuracy independently of the weighting
function and the amount of features that are being used.

All the other decisions follow from the results obtained in the previous sec-
tion.

• K = 14

• Weighting function = Adaptive Gaussian

• Feature Aggregation = First three ranked features

• Distance Metric = Lp norm with p=1/2

10

9 Testing results

Estimated accuracy: 43.54%
Test set accuracy: 41.58%

CONF class 0 class 1 class 2 class 3 class 4
class 0 35 12 14 5 0
class 1 6 2 7 2 0
class 2 7 5 5 1 0
class 3 0 0 0 0 0
class 4 0 0 0 0 0

Table 2: Confusion Matrix

10 Conclusions

Most of the results from this work are biased towards experimenting with weight-
ing functions and Feature Ranking and aggregation. In Homework 2, Optimiz-
ing KNN. There is a detailed exploration on optimizing the K value and the
distance metric.

• KNN is definitively not the best way to classify this data. When compared
against other methods the performance is 6% less than just selecting al-
ways the most likely prior. When compared against SVM, there is a 5%
negative difference. This method is below the winner of the competition
by 9%. That method used the less correlated two features. Interestingly
those are features 4 and 9 which are almost the highest ranked and the
lowest ranked features using Bhattacharyya distance. When comparing
our KNN against other KNN classifier, we find a very challenging situ-
ation against the winner of this competition. That person tried KNN
with LDA and K=25, our result shows higher predicted accuracy than
our optimized KNN and practically the same test accuracy. While we ob-
tained 41.58%, LDA+KNN obtained 41.81%. When comparing our KNN
classifier with other KNN classifiers, we obtain a much better answer.
Other KNN methods who participated in the contest obtained accuracies
of 26.73% and 36.63%. Wrapping up, feature selection as well as LDA
seem to be very good alternatives when classifying very correlated data
with very unbalance classes.

• The performance of the inverse distance weighting function is lower than
expected. In fact it is always lower than the other two weighting func-
tions. Voting function dominates overall, but for greedy analysts, Gaus-
sian weighting reaches by best results.

11

• Fifth order statistic seems to be ranked incorrectly, every weighting func-
tion shows some sign of decay in this feature. Our explanation is that
fifth feature is not likely being drawn from a Gaussian distribution. We
strongly recommend eliminating this feature and keep aggregating features
results might improve for the first following aggregated features.

• The stability of the weighting functions can also be appreciated from Fig-
ure 6. Gaussian weighting functions will be good for those who like to take
risks, while voting weighting functions will be a good option for those who
rather have a. No matter which function is chosen, inverse distance defini-
tively does not perform well on this data.

• Aggregate composition of features is an important value to optimize.
When all the information is used, we experience the curse of dimension-
ality. Similarly when we use few information the accuracy is not so good.
This can be appreciated in Figures 3,4, and 5 where results are not so
good when aggregating feature number five.

11 Future work

Future work include studying how to optimize parameters for the Adaptive
gaussian weighting function as it has shown to have better results than other
weighting functions. It is also recommended to keep experimenting other ways
of aggregating the features. For example a greedy algorithm might provide
interesting results. We can choose the feature that has a better accuracy on the
training data, and then adding to the analysis all of the other features one by
one to see which one provides better results. This procedure should be followed
until finding a decrease in the accuracy. This algorithm is very costly but it
might be interesting to compare against fisher’s linear discriminant.

References

[1] Daniel Adler and Duncan Murdoch. rgl: 3D visualization device system
(OpenGL), 2012. R package version 0.92.861.

[2] Kaggle Inc. Data mining competitions, 2010.

[3] Ron Kohavi, Pat Langley, and Yeogirl Yun. The utility of feature weight-
ing in nearest-neighbor algorithms. In Proceedings of the Ninth European
Conference on Machine Learning, pages 85–92. Springer-Verlag, 1997.

[4] David Meyer and Christian Buchta. proxy: Distance and similarity mea-
sures, 2012. R package version 0.4-7.

[5] Daniel Rugeles. Ece 662 pattern recognition. Notes taken in class, 2012.

12

[6] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011.
ISBN 3-900051-07-0.

A Code

A.1 Feature Ranking

##

############### BHATTACHARYYA DISTANCE ################
Finds the Bhattacharyya distance between data drawn
from Normal Distributions
#
Warning . Distributions with Variance=0
will be returned as 0 distance
#
Equivalent to
bhattacharyya . dist (c (1 , 1) , c (2 , 5) , d iag (2) , d iag (2))
#
X1 : First univariate gaussian data
X2 : Second univariate gaussian data
###

#install . packages (” fpc ”)
library (fpc)

bhatDistance <− f unc t i on (X1 , X2){

define means
mX1 <− mean(X1)
mX2 <− mean(X2)

define difference of means
mDiff <− mX1 − mX2

define covariance matrix per each class
cvX1 <− cov (X1 , X1)
cvX2 <− cov (X2 , X2)

define halfsum of cv ' s
p <− (cvX1+cvX2) /2

Bhattacharyya ' s equation
a <− 0 .125 ∗ t (mDiff) ∗ pˆ(−1) ∗ mDiff + 0.5 ∗ l og (abs (p) /

sq r t (abs (cvX1) ∗ abs (cvX2)))
re turn (a)

}

#Example :
#X1<−c (1 , 4)
#X2<−c (2 , 5)
#bhatDistance (X1 , X2)

##

############ FEAT RANKING #############

13

Finds a vector with the percentage
of success f o r following parameters
#
dist : Distance among a l l the points
train : training data
K : maximum number of neighbors
#######################################

featRanking <− f unc t i on (train){

#pr in t (train)

#Hold temporary the data f o r one class in one feature
classtemp<−c ()

#Hold the separation f o r each class per feature
classesseparation<−c ()

classfeat<−c ()

ranking<−c ()

#f o r each feature
f o r (i in 2 : l ength (train)){

#list of list with data from each class
class<−c ()

#Allocate memory . 6 is the number of classes + 1
class [[6]] [[2]] < − 0

#assign each class to a vector
f o r (j in 1 : l ength (train [[1]])){

#use class as key
c la<−train [[1]] [[j]]
#data to be inserted
dat<−train [[i]] [[j]]

class<−appendToHash (class , c la , dat)

}

#pr in t (class)

ranking [i−1]<−0

f o r (a in 1 : (l ength (class)−2)){
f o r (b in (a+1) : l ength (class)−1){

#pr in t (” distance between ”)
#pr in t (a)
#pr in t (b)
#pr in t (class [[a]])
#pr in t (class [[b]])
dis<−bhatDistance (class [[a]] , class [[b]])

i f (is . na (dis)){dis<−0}

ranking [i−1]<−ranking [i−1]+dis

#pr in t (” distance ”)
#pr in t (dis)

}
}

14

}

re turn (ranking)

}

##

#append value into ” hash ” table using key

appendToHash<−f unc t i on (hash , key , value){

len<−l ength (hash [[key +1]])

#pr in t (” insert in vector : ”)
#pr in t (index)
#pr in t (value)

hash [[key +1]] [[len+1]]<−value #class could be zero

re turn (hash)
}

##

#Find the ranking
train=read . csv (” traintestknn . csv ”)
result<−featRanking (train)

A.2 KNN Classifier

################################## PLOTING

############## PLOT 3D ################
Plots Data in 3D
#
z : Grid (Matrix) with values
#
#######################################

#install . packages (” rgl ”)
library (rgl)

plot3d <−f unc t i on (z){
z <− 10∗ z #Data to p lo t
x <− 10∗ (1 : nrow (z)) # 10 meter spacing (S to N)
y <− 10∗ (1 : ncol (z)) # 10 meter spacing (E to W)
zlim <− range (y)
zlen <− zlim [2] − zlim [1] + 1
colorlut <− heat . colors (zlen , alpha=0) # height color lookup table
col <− colorlut [z−zlim [1]+1] # assign colors to heights f o r each←↩

point
open3d ()
rgl . bbox (alpha=0.8 , front=”lines ” , back=”lines ” , color=”black ” , lit=←↩

FALSE)
#Information Surface
rgl . s u r f a c e (x , y , z , color=col , alpha=1, lit=FALSE)
#Information lines
rgl . s u r f a c e (x , y , z , color=”black ” , front=”lines ” , alpha=1, lit=←↩

FALSE)

15

#Contour Map
colorlut <− terrain . colors (zlen , alpha=1)
col <− colorlut [z−zlim [1]+1]
rgl . s u r f a c e (x , y , matrix (1 , nrow (z) , ncol (z)) , color=”black ” , front←↩

=”lines ” , back=”lines ” , col . a x i s=”black ” , lit=FALSE)
}

################################## KNN

######### INSERT K NEIGHBORS ##########
Inserts and keeps in order the
closest K neighbors
#
val : point to be inserted
neigh : structure holding KNN
pos : index of val
#
#######################################

insertKneighbor<−f unc t i on (val , neigh , pos){
len<−l ength (neigh) /2
#position holds the position of neigh
f o r (i in 1 : len){

i f (val<neigh [i]) {
i f ((len−1)>=i){

f o r (j in (len−1) : i){
neigh [(j+1)]<−neigh [j]
neigh [(j+1+len)]<−neigh [(j+len)]

}
}
neigh [i]<−val
neigh [(i+len)]<−pos
re turn (neigh)

}
}
re turn (neigh)

}

cummulative<−f unc t i on (num){
result<−0
i f (1<=num){

f o r (i in 1 : num){
result<−result+i

}
}
re turn (result)

}
###

########## FIND K NEIGHBORS ###########
Finds the closest neighbors and
their distances with the following
parameters .
#
K : number of neighbors
num : index to point of interest
length : l ength of training data
dist : Distance among a l l the points
#
#######################################

findKneighbors<−f unc t i on (K , num , length , dist , init , end){

#There is K−1 neighbors maximum
i f (K>=length){

pr in t (” K is too big ”)

16

re turn ()
}

neigh<−c ()
f o r (i in 1 : K){

neigh [i]= In f
}
neigh<−cbind (neigh , neigh)

#a<−c ()
i f (init<=num){

index<−(num−1)+(init−1)∗(length −1)−cummulative ((init−1))
}
e l s e {

index<−((num−1)+(num−1)∗(length −1))−cummulative ((num−1))+init−←↩
num+1

}

i f (end<num){til<−end}
e l s e {til<−num−1}

i f (init<=til && init<num){

f o r (i in init : til){
index<−(num−1)+(i−1)∗(length −1)−cummulative ((i−1))
#a [(i−init+1)]<−dist [index]
neigh<−insertKneighbor (dist [index] , neigh , i)

}
}
index<−(num−1)+(til) ∗(length −1)−cummulative (til)

#Uncomment i f you want to add the same point to be his own ←↩
neighbor .

#i f (end>=num && init<=num){
neigh<−insertKneighbor (0 , neigh , (num))
#a [til+1−init+1]<−0
#}

i f (init>num){
since<−init−1
index<−index+init−num−1

}
e l s e {

since<−til+1
}

til<−end−1

i f (since<=til){

f o r (j in (since : til)){
index<−index+1
#a [(j−init+2)]<−dist [index]
neigh<−insertKneighbor (dist [index] , neigh , (j+1))

}
}
#pr in t (neigh)
#pr in t (a)
re turn (neigh)

}

###

############ MULTIPLE KNN #############

17

Finds a vector with the percentage
of success f o r following parameters
#
dist : Distance among a l l the points
train : training data
K : maximum number of neighbors
#######################################

MultipleKNN<−f unc t i on (K , train , dist , joinfun){

len<−l ength (train [[1]])

#Initialize result
results<−c ()
result<−c ()
f o r (i in 1 : K){

result [i]<−0
}

#fo r each point in the data s e t
f o r (point in 1 : (as . integer (len /2))){#(len)<−>(len /2)

Second half of n contains the index of the neighbor
The first half contains the distance to such index
n<−findKneighbors (K , point , len , dist , as . integer (len /2)+1, len)#1 ←↩

<−> as . integer (len /2)+1

Classify the first K neighbors (n) of (point)
i f (joinfun==1){

classification<−ClassifyVoting (n , train)
}
i f (joinfun==2){

classification<−ClassifyInvDist (n , train)
}
i f (joinfun==3){

classification<−ClassifyGaussian (n , train)
}

i f (DEBUG){ pr in t (” classification ”)
p r in t (classification)}

#Find the answer which needs to be added one , because classes ←↩
start with 1

answer<−train [point , 1]
answer<−answer+1

i f (DEBUG){
pr in t (” answer ”)
p r in t (answer)}

#Evaluate the classifier
f o r (i in 1 : l ength (classification)){

i f (answer==classification [i]) {
result [i]<−1

} e l s e {
result [i]<−0

}
}
i f (DEBUG){

pr in t (” result ”)
p r in t (result)}

#Matrix with results : rows=test trial columns=Col−NN
results<−rbind (results , result)

}

i f (DEBUG){

18

pr in t (” results ”)
p r in t (results)}

total<−apply (results , 2 , sum)
total<−total / length (results [, 1])

r e turn (total)
}

##

ClassifyVoting<−f unc t i on (n , train){
value<−0
result<−c ()

numclasses<−max(train [1])

#Initialize the array that holds the likelyhood per class of each ←↩
point

a<−c ()
f o r (i in 1 : (numclasses+1)){

a [i]<−0
}

#Initialize the array that holds the classification per each K
classification<−c ()
f o r (k in 1 : as . integer (l ength (n) /2)){

classification [k]<−0
}

#n/2 is the last neighbor
f o r (neigh in 1 : as . integer (l ength (n) /2)){

i f (n [neigh ,1]>= In f){
result [neigh]<−0

}
e l s e {

neighidx<−n [neigh , 2]
i f (! is . na (train [neighidx , 1])){

neighborclass<−train [neighidx , 1]
#pr in t (” neighborclass ”)
#pr in t (neighborclass)
a [neighborclass+1]<−a [neighborclass+1]+1
#pr in t (” a ”)
#pr in t (a)

#Find the most likely class per neighbor
#pr in t (” maxindex (a) ”)
#pr in t (maxindex (a))
classification [neigh]<−MaxIndex (a)
#pr in t (” class ”)
#pr in t (classification)

}
}

}

i f (DEBUG){
pr in t (” a ”)
p r in t (a)}

re turn (classification)
}

##

ClassifyInvDist<−f unc t i on (n , train){

19

value<−0
result<−c ()

numclasses<−max(train [1])

#Initialize the array that holds the likelyhood per class of each ←↩
point

a<−c ()
f o r (i in 1 : (numclasses+1)){

a [i]<−0
}

#Initialize the array that holds the classification per each K
classification<−c ()
f o r (k in 1 : as . integer (l ength (n) /2)){

classification [k]<−0
}

#n/2 is the last neighbor
f o r (neigh in 1 : as . integer (l ength (n) /2)){

i f (n [neigh ,1]>= In f){
result [neigh]<−0

}
e l s e {

neighidx<−n [neigh , 2]
i f (! is . na (train [neighidx , 1])){

neighborclass<−train [neighidx , 1]
#pr in t (” neighborclass ”)
#pr in t (neighborclass)

a [neighborclass+1]<−a [neighborclass+1]+1/n [neigh , 1]

#Find the most likely class per neighbor
#pr in t (” maxindex (a) ”)
#pr in t (maxindex (a))
classification [neigh]<−MaxIndex (a)
#pr in t (” class ”)
#pr in t (classification)

}
}

}

i f (DEBUG){
pr in t (” a ”)
p r in t (a)}

re turn (classification)
}

##

ClassifyGaussian<−f unc t i on (n , train){
value<−0
result<−c ()

numclasses<−max(train [1])

#Initialize the array that holds the likelyhood per class of each ←↩
point

a<−c ()
f o r (i in 1 : (numclasses+1)){

a [i]<−0
}

20

#Initialize the array that holds the classification per each K
classification<−c ()
f o r (k in 1 : as . integer (l ength (n) /2)){

classification [k]<−0
}

#n/2 is the last neighbor
f o r (neigh in 1 : as . integer (l ength (n) /2)){

medianneigh<−n [l ength (n) ∗1/4+1]
i f (n [neigh ,1]>= In f){

result [neigh]<−0
}
e l s e {

neighidx<−n [neigh , 2]
i f (! is . na (train [neighidx , 1])){

neighborclass<−train [neighidx , 1]
#pr in t (” neighborclass ”)
#pr in t (neighborclass)

a [neighborclass+1]<−a [neighborclass+1]+dnorm (n [neigh←↩
, 1] , mean=0,sd=medianneigh)

#Find the most likely class per neighbor
#pr in t (” maxindex (a) ”)
#pr in t (maxindex (a))
classification [neigh]<−MaxIndex (a)
#pr in t (” class ”)
#pr in t (classification)

}
}

}

i f (DEBUG){
pr in t (” a ”)
p r in t (a)}

re turn (classification)
}

##

#Find the index of the maximum value in the array
MaxIndex<−f unc t i on (a){

maximum<−1
f o r (i in 1 : l ength (a)){

i f (a [i]>a [maximum]) {
maximum<−i

}
}
re turn (maximum)

}

##

OptimizeKNN<− f unc t i on (K , train){

f o r (join in 1 : 3) {
dist<−scan (” mindist1_4 . dat ”)
totmin1_4<−MultipleKNN (K , train , dist , join)

#dist<−scan (” mindistr1_8 . dat ”)
#totminr1_8<−MultipleKNN (K , train , dist , join)

dist<−scan (” mindist1_2 . dat ”)

21

totmin1_2<−MultipleKNN (K , train , dist , join)

dist<−scan (” mindistr1_2 . dat ”)
totminr1_2<−MultipleKNN (K , train , dist , join)

dist<−scan (” mindist1 . dat ”)
totmin1<−MultipleKNN (K , train , dist , join)

#dist<−scan (” mindistr2 . dat ”)
#totminr2<−MultipleKNN (K , train , dist , join)

dist<−scan (” mindist2 . dat ”)
totmin2<−MultipleKNN (K , train , dist , join)

#dist<−scan (” mindistr8 . dat ”)
#totminr8<−MultipleKNN (20 , train , dist)

##dist<−scan (” mindist4 . dat ”)
##totmin4<−MultipleKNN (K , train , dist , join)

##dist<−scan (” mindist8 . dat ”)
##totmin8<−MultipleKNN (K , train , dist , join)

#dist<−scan (” candist . dat ”)
#totcan<−MultipleKNN (K , train , dist , join)

#dist<−scan (” mindist . dat ”)
#totmin<−MultipleKNN (K , train , dist , join)

dist<−scan (” maxdist . dat ”)
totmax<−MultipleKNN (K , train , dist , join)

total<−c ()
#total<−rbind (total , totman)
#total<−rbind (total , toteuc)
#total<−rbind (total , totcan)
total<−rbind (total , totmin1_4)
#total<−rbind (total , totminr1_8)
total<−rbind (total , totmin1_2)
total<−rbind (total , totminr1_2)
total<−rbind (total , totmin1)
#total<−rbind (total , totminr2)
total<−rbind (total , totmin2)
#total<−rbind (total , totminr8)
##total<−rbind (total , totmin4)
##total<−rbind (total , totmin8)
total<−rbind (total , totmax)

p r i n t (paste (” Result Join Method #”,join , sep=””))

p r in t (total)

resultfile<−paste (” resulttest ” , join , sep=””)
resultfile<−paste (resultfile , ” . dat ” , sep=””)

write (total , resultfile)

#pr in t (” after ”)
#temp<−scan (resultfile)
#pr in t (temp)

#plot3d (total)
}

}

22

