Real Analysis Qual Prep

Summer 2009

Assignment 4: Integration

1. True or false: If f is a non-negative function defined on \mathbf{R} and

$$\int_{\mathbf{R}} f \, dx < \infty,$$

then $\lim_{|x|\to\infty} f(x) = 0.$

- 2. Let (X, \mathcal{F}, μ) be a measure space and $f \in L(\mu)$. Show that $\{f \neq 0\}$ is σ -finite.
- 3. True or false: Let (X, \mathcal{F}, μ) be a finite measure space, $\{f_n\}$ a non-increasing sequence of non-negative functions which converges to f. Then $\int_X f_n d\mu \to \int_X f d\mu$.
- 4. Let f be a non-negative measurable function on **R**. Prove that if

$$\sum_{n=-\infty}^{\infty} f(x+n)$$

is integrable, then f = 0 a.e.

- 5. Let $\{r_1, r_2, ...\}$ be an enumeration of $\mathbf{Q} \cap [0, 1]$, and let $f(x) = \sum_{\{n: x > r_n\}} 2^{-n}$. Compute $||f||_1$.
- 6. Prove that the sum

$$\sum_{n=0}^{\infty} \int_0^{\pi/2} (1 - \sqrt{\sin x})^n \cos x \, dx$$

converges to a finite limit, and find its value.

- 7. Let f be a continuous function on I = [-1, 1] with the property that $\int_I x^n f(x) dx = 0$ for $n = 0, 1, 2, \dots$ Show that f is identically zero.
- 8. If $f \in L_1[0, 1]$, show that given $\epsilon > 0$ there exists $\delta > 0$ such that $\mu(A) < \delta$ implies $\int_A |f| < \epsilon$.

9. (a) Let $f \in L^1(0,\infty)$. Prove that there exists a sequence $x_k \nearrow \infty$ such that

$$\lim_{k \to \infty} |f(x_k)| = 0.$$

(b) Let $f \in L^1(\mathbf{R}^n)$ with $n \ge 2$. Prove that there exists a sequence $R_k \nearrow \infty$ such that

$$\lim_{k \to \infty} R_k \int_{S(0,R_k)} |f| \, d\sigma = 0,$$

where $S(0,r) = \{x \in \mathbf{R}^n | |x| = r\}$, and $d\sigma$ represents the (n-1)-dimensional Lebesgue measure induced on the sphere S(0,r).

10. Prove for every $\xi \in \mathbf{R}^n$ prove the existence of the limit

$$\lim_{k \to \infty} \int_{\mathbf{R}^n} \frac{e^{-2\pi i \langle \xi, x \rangle} e^{-|x|^2}}{(k^{-n} + k|x|^2)^{(1/2)(n+1)}} \, dx,$$

and compute it explicitly in terms of the (n-1)-dimensional measure σ_{n-1} of the unit sphere in $\mathbf{R}^{\mathbf{n}}$, and the Beta function

$$B(x,y) := 2 \int_0^{\pi/2} \cos(\theta)^{2x-1} \sin(\theta)^{2y-1} d\theta, \ x, y > 0.$$

Remark: Note carefully that you are not required to know or write explicitly the value of σ_{n-1} .

11. Let f_1, f_2, \dots be functions on \mathbf{R}^n such that

$$\int_{\mathbf{R}^n} f_k = 1, \ k \ge 1, \ \text{and} \ 0 \le f_k \le \frac{1}{k}.$$

Prove $\int_{\mathbf{R}^n} \sup_{k \ge 1} f_k = \infty$.

- 12. Let f be a function on $(-\infty, \infty)$ such that given $\epsilon > 0$ there is a polynomial p(x) such that $|p(x) f(x)| < \epsilon$ for all $x \in \mathbf{R}$. Show that f is a polynomial.
- 13. Let f be a real-valued measurable function on [a, b] such that $\int_a^b f^n dx = c$ for n = 2, 3, 4. Show that $f = \chi_A$ a.e. for some measurable set $A \subset [a, b]$.
- 14. Let (X, \mathcal{F}, μ) be a finite measure space, and f a measurable extended real-valued function defined on X. Show that $f \in L(\mu)$ if and only if

$$\sum_{k=1}^{\infty} \mu\{|f| \ge k\} < \infty.$$

15. Let f be a continuous function on [-1, 1]. Find

$$\lim_{n \to \infty} n \int_{-1/n}^{1/n} f(x) (1 - n|x|) \, dx.$$

- 16. True or false: If $f \in L^1(\mathbf{R})$ and $||f\chi_A||_1 = 0$ for all measurable sets A satisfying $\mu(A) = \pi$, then f = 0 a.e.
- 17. Show that if $f_n \to f$ a.e., $f_n \ge 0$, $g_n \to g$ a.e., $f_n \le g_n$ a.e., and $||g_n||_1 \to ||g||_1$, then $||f_n||_1 \to ||f||_1$.
- 18. Calculate $\lim_{t\to 0^+} \int_0^1 \frac{e^{-t \ln x} 1}{t} dx$. (Hint: don't think too hard).
- 19. Let $\alpha \geq 1$ and compute, with justification,

$$\lim_{n \to \infty} \int_0^{\pi} n \ln \left[1 + \left(\frac{\sin x}{n} \right)^{\alpha} \right] \, dx.$$

20. Let (X, \mathcal{F}, μ) be a measure space and let $f : X \to [0, \infty]$ be measurable with $f \in L^1(X, \mu)$. Compute

$$\lim_{n \to \infty} \int_X n \arctan[(f/n)^{\alpha}] d\mu, \, \alpha \in (0, \infty).$$

- 21. Determine whether the limits exist, and if so, compute their values:
 - (a) $\lim_{n \to \infty} n \int_{-1}^{1} e^{-(\frac{nx+1}{n})^2} e^{-x^2} dx$ (b) $\lim_{n \to \infty} n \int_{-\infty}^{\infty} e^{-(\frac{nx+1}{n})^2} - e^{-x^2} dx$
- 22. Define $F(t) = \int_0^\infty t^3 e^{-t^2 x} dx$. Show that F(t) is differentiable, and compute F'(0).