Bridges

1. (Borel-Cantelli) Prove that if $\sum \mu(E_n) < \infty$ then

$$\mu\left(\bigcap_{j\geq 1}\bigcup_{n\geq j}E_n\right)=0.$$

2. Let (X, \mathcal{F}, μ) be a finite measure space and suppose $f \in L^1(\mu)$ is nonnegative and satisfies the property that

$$\int_E f \ d\mu \le \mu(E)^{1/q} \text{ for all measurable sets } E$$

(here $1 < q < \infty$ and p is such that $\frac{1}{p} + \frac{1}{q} = 1$). Prove that $f \in L^r(\mu)$ for $1 \le r < p$. **Hint:** Consider the sets $E_n = \{x \in X : 2^n \le f(x) \le 2^{n+1}\}.$

3. Let $f \in L^1(\mathbb{R}^n)$. Prove that the function

$$F(h) = \int_{\mathbb{R}^n} |f(x+h) - f(x)| dx$$

is continuous in h.

- 4. Let (X, \mathcal{M}, μ) be a finite measure space. Let $1 . Show <math>L^r(\mu) \supset L^p(\mu)$ whenever $1 \le r < p$. Does the reverse containment hold?
- 5. Let $f(x) = e^{-|x|}, g \in L^1(\mathbb{R}).$
 - (a) Show $||f * g||_1 \le 2||g||_1$.
 - (b) Show f * g is differentiable on $\mathbb{R} \{0\}$, and find $\frac{d}{dx}(f * g)$.
- 6. Let (X, \Re, μ) be a finite (or even σ -finite) measure space. Notice $L^{\infty}(\mu)$ is a ring with unity. Let I be a proper ideal of $L^{\infty}(\mu)$ with the following property:

Whenever $f_n \in I, f \in L^{\infty}(\mu)$ such that $\forall g \in L^1(\mu), \int f_n g \to \int f g$, then $f \in I$.

Show $\exists A \subset X$, with $\mu A > 0$ such that $I = \{\phi \in L^{\infty} : \forall x \in A, \phi(x) = 0\}$. **Hint:** If $\phi \in I$ show $\chi_{\{\phi \neq 0\}} \in I$.

- 7. For each $n \in \mathbb{N}$, let E_n be a Lebesgue measurable set and let μ be the Lebesgue measure.
 - (a) Prove that

$$\mu\left(\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}E_k\right)\leq\liminf_n\mu(E_n).$$

- (b) Exhibit a sequence $\{E_n\}$ for which equality in the above expression does not hold.
- (c) What can you say about the relation

$$\mu\left(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}E_k\right)\geq\limsup_n\mu(E_n)?$$

8. Let (X, \mathcal{F}, μ) be a measure space and suppose $f \in L^p(\mu), 1 \leq p < \infty$. Suppose E_n is a sequence of measurable sets satisfying $\mu(E_n) = \frac{1}{n}$ for all n. Prove that

$$\lim_{n \to \infty} \left(n^{\frac{p-1}{p}} \int_{E_n} |f| d\mu \right) = 0.$$

- 9. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) = 1$ and let F_1, \ldots, F_{17} be seventeen measurable subsets of X with $\mu(F_j) = \frac{1}{4}, \forall j$.
 - (a) Prove \exists five of our sets, say $F_{n_1}, ..., F_{n_5}$ with $\mu(\bigcap_{j=1}^5 F_{n_j}) > 0$.
 - (b) Is the conclusion above true if we take sixteen sets instead of seventeen?