- 1. Let X be a normed linear space (for example, $L^{13.7}(\mathbb{R})$). Show X is complete iff every absolutely convergent series converges in X. (Let $x_n \in X$. We say $\sum x_n$ converges iff $\exists x \in X$ such that $\sum x_n = x$, and we say $\sum x_n$ converges absolutely iff $\sum ||x_n||$ is a convergent series of real numbers.
- 2. (a) Let $E = \{x \in [0,1] : x = .a_1a_2\cdots, a_n \neq 7 \forall n\}$, i.e., the set E consists of the reals in [0,1] whose decimal expansion do not contain a 7. Prove that m(E) = 0.
 - (b) Let $E = \{x \in [0, 1] : x = .a_1a_2\cdots$, with $a_n = 2$ or $3 \forall n\}$. Prove that E is Lebesgue measurable and compute its measure.
- 3. Let $f \in L^p[0,1], 2 \le p \le \infty$. Show f = 0 a.e if for all $x \in [0,1]$

$$\int_0^1 f(y)\sin(xy)dy = 0$$

4. Let (X, \mathcal{M}, μ) be a probability space and $f_n : X \to [0, 1]$ a sequence of measurable functions which converge to zero in measure. Let F be a uniformly continuous function on \mathbb{R} . Prove

$$\lim_{n} \int_{X} F(f_n) = F(0).$$

5. Let f be a measurable function on a measure space (X, \mathcal{M}, μ) . For 0 define

$$\phi(p) = \int_X |f|^p d\mu.$$

(a) Let $E = \{p | \phi(p) < \infty\}$. Show that if $r, s \in E$ and $r then <math>p \in E$.

(b) Prove that $\log \phi$ is convex on the interval (r, s) whenever $r, s \in E$.

6. Let f be a measurable function on [0, 1]. Find

$$\lim_{n \to \infty} \int_0^1 (\cos f(x))^{2n} dx$$

- 7. Prove or disprove: Let $1 \le p$. $\{f \in L^p[0,1] : ||f||_p \le 1\}$ is compact.
- 8. Let (X, \mathcal{M}, μ) be a finite measure space, and $1 \leq p < q \leq \infty$. Let $A \subseteq L^q \cap L^p$ that is compact with respect to the L^q norm. Show A is compact in the L^p norm. Is the converse true?
- 9. Proof or counter-example: If f is a bounded measurable function on (X, \mathcal{M}, μ) , then there exists a continuous function g with $g = f, \mu$ -a.e.